RENO Reactor Neutrino Experiment

"New Results from RENO"

RENO = Reactor Experiment for Neutrino Oscillation

(On behalf of RENO Collaboration)

K.K. Joo Chonnam National University February 11, 2016

Lake Louise Winter Institute 2016 @ Chateau Lake Louise, Canada

Outline

RENO

- Data taking status
- Improvements in data analysis
- Latest results of θ_{13} from RENO
- Spectral analysis for ∆m_{ee}²
- Results from n-H IBD sample
- Summary

RENO Collaboration

10 institutions and 40 physicists in Korea

- Chonnam National University
- Chung-Ang University
- Dongshin University
- GIST
- Gyeongsang National University
- Kyungpook National University
- Sejong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost: \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors since Aug. 2011

Reactor Experiment for Neutrino Oscillation

YongGwang Nuclear Power Plant

- Located in the west coast of southern part of Korea
- □ ~300 km from Incheon international airport
- ☐ 6 reactors are lined up in roughly equal distances and span ~1.3 km
- ☐ Total average thermal output ~16.7GW_{th} (2nd largest in the world)

YongGwang(靈光): = glorious[splendid] light (~spirited)

New name: Hanbit

RENO Detector

Inner PMTs: 354 10" PMTs

• solid angle coverage = ~14%

• Outer PMTs: ~ 67 10" PMTs

■ Target : **16.5 ton** Gd-LS

(R=1.4m, H=3.2m)

■ Gamma Catcher: 30 ton LS

(R=2.0m, H=4.4m)

Buffer: 65 ton mineral oil (MO)

(R=2.7m, H=5.8m)

■ Veto: 350 ton water (R=4.2m, H=8.8m)

Detection of Reactor Antineutrinos

- Use inverse beta decay $(\overline{V}_e + p \rightarrow e^+ + n)$ reaction process
- Prompt part: subsequent annihilation of the positron to two 0.511MeV γ
- □ Delayed part: neutron is captured

 $\sim 200 \mu s$ w/o Gd $\sim 30 \mu s$ w Gd

Gd has largest n absorption cross section & emits high energy γ

☐ Signal from neutron capture

~2.2MeV w/o Gd

~ 8MeV w Gd

- Measure prompt signal & delayed signal
- "Delayed coincidence" reduces backgrounds drastically

Signal: IBD Pair

RENO Data Taking Status

- Data taking began on Aug. 1, 2011 with both near and far detectors.
 (DAQ efficiency: ~95%)
- A (220 days): First θ₁₃ result
 [11 Aug, 2011~26 Mar, 2012]
 PRL 108, 191802 (2012)
- B (403 days): Improved θ₁₃ result
 [11 Aug, 2011~13 Oct, 2012]
 NuTel 2013, TAUP 2013, WIN 2013
- C (~500 days): New θ₁₃ result
 Shape+rate analysis (submitted in PRL)
 [11 Aug, 2011~31 Jan, 2013]
- Total observed reactor neutrino events as of today: ~ 1.5M (Near), ~ 0.15M (Far)
 - → Absolute reactor neutrino flux measurement in progress
 [reactor anomaly & sterile neutrinos]

Recent Results from RENO

- New measured value of θ_{13} from rate-only analysis using ~500 days of data
- Observation of an excess at ~5 MeV in reactor neutrino spectrum
- Observation of energy dependent disappearance of reactor neutrinos to measure Δm_{ee}^2 and θ_{13}

"Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment"

(submitted in PRL, arXiv:1511.05849 [hep-ex], Nov 2015)

- Details can be found there & PRD in preparation
- Rate-only analysis with neutron capture on Hydrogen using ~400 days of data

Improvements after Neutrino 2014

- Relax Q_{max}/Q_{tot} cut: $0.03 \rightarrow 0.07$
 - allow more accidentals to increase acceptance of signal and minimize any bias to the spectral shape
- More precisely observed spectra of Li/He background
 - reduced the Li/He background uncertainty based on an increased control sample
- More accurate energy calibration
 - best efforts on understanding of non-linear energy response and energy scale uncertainty
- Elaborate study of systematic uncertainties on a spectral fitter
 - estimated systematic errors based on a detailed study of spectral fitter in the measurement of $\Delta m_{ee}^{\ 2}$

Backgrounds

- Accidental coincidence between prompt and delayed signals
- Fast neutrons produced by muons, from surrounding rocks and inside detector (n scattering : prompt, n capture : delayed)

Fast neutrons

■ ⁹Li/⁸He β-n followers produced by cosmic muon spallation

Signature of Reactor Neutrino Event (IBD)

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

- Prompt signal (e⁺): 1 MeV 2γ's + e⁺ kinetic energy (E = 1~10 MeV)
- Delayed signal (n): 8 MeV γ's from neutron's capture by Gd

~26 μs (0.1% Gd) in LS

Observed spectra for Prompt Signal

Observed Spectra for Delayed Signal (n captured by Gd)

Measured Spectra of IBD Prompt Signal


```
Near Live time = 458.49 days
# of IBD candidate = 290,775
# of background = 8,041 (2.8 %)
```

Far Live time = 489.93 days # of IBD candidate = 31,541 # of background = 1540 (4.9 %)

Expected Reactor Antineutrino Fluxes

Reactor neutrino flux

$$\Phi(E_{v}) = \frac{P_{th}}{\sum_{i \text{ sotopes}}^{i \text{ sotopes}}} \sum_{i}^{i \text{ sotopes}} f_{i} \cdot \phi_{i}(E_{v})$$

- P_{th} : Reactor thermal power provided by the YG nuclear power plant
- f_i: Fission fraction of each isotope determined by reactor core simulation of Westinghouse ANC
- $\phi_i(E_v)$: Neutrino spectrum of each fission isotope [* P. Huber, Phys. Rev. C84, 024617 (2011) T. Mueller *et al.*, Phys. Rev. C83, 054615 (2011)]
- E_i: Energy released per fission
 [* V. Kopeikin *et al.*, Phys. Atom. Nucl. 67, 1982 (2004)]

Isotopes	James	Kopeikin
^{235}U	201.7±0.6	201.92±0.46
^{238}U	205.0±0.9	205.52±0.96
²³⁹ Pu	210.0 ± 0.9	209.99±0.60
²⁴¹ Pu	212.4±1.0	213.60±0.65

Observed Daily Averaged IBD Rate

- Good agreement with observed rate and prediction
- Accurate measurement of thermal power by reactor neutrinos

Observation of an excess at 5 MeV

Correlation of 5 MeV Excess with Reactor Power

- ** Recent ab initio calculation [D. Dwyer and T.J. Langford, PRL 114, 012502 (2015)]:
- The excess may be explained by addition of eight isotopes, such as ⁹⁶Y and ⁹²Rb

Energy Calibration from γ-ray Sources

Non-linear resonse of the scintillation energy is calibrated using γ-ray source

Deviation of all calibration data points with respect to the best-fit is within ~1%

B12 Energy Spectrum (Near & Far)

Energy spectrum is well described between data and MC spectrum

Energy Scale Difference between Near & Far

Energy scale difference < 0.15% for $E_p = 1^8$ MeV

Systematic Uncertainties and Errors

Uncertainties	Rate Only Sin²2θ ₁₃	Rate + Shape Sin²2θ ₁₃	Rate + Shape ∆m _{ee} ² (×10³ eV²)
Statistics	0.0091	+ 0.0087 - 0.0085	+ 0.207 – 0.226
Reactor	0.0028	+ 0.0026 - 0.0028	+ 0.018 - 0.018
Detection Efficiency	0.0029	+ 0.0028 - 0.0029	+ 0.020 - 0.022
Energy Scale	-	+ 0.0026 - 0.0015	+ 0.081 - 0.094
Backgrounds	0.0054	+ 0.0030 - 0.0028	+ 0.084 – 0.106
Total Systematic	0.0068	+ 0.0055 - 0.0052	+ 0.115 - 0.133

1st Measurement (May, 2012, PRL) $Sin^22\theta_{13}$ =0.113 +- 0.013 (stat.) +- 0.019 (sys.)

Analysis Results

Rate Only $\sin^2 2\theta_{13} = 0.087 \pm 0.009 (\text{stat.}) \pm 0.007 (\text{syst.}) \pm 0.011 (\text{total})$

Rate + Shape

$$\left|\Delta m_{ee}^{2}\right| = 2.62_{-0.23}^{+0.21} (\mathrm{stat.})_{-0.13}^{+0.12} (\mathrm{syst.}) (\times 10^{-3} \, eV^{2}) \pm 0.26 (\mathrm{total}) \right|$$
 10 % precision

$$\sin^2 2\theta_{13} = 0.082 \pm 0.009 (\text{stat.}) \pm 0.006 (\text{syst.}) \pm 0.010 (\text{total})$$
 13 % precision

(submitted in PRL)

Far to Prediction from Near Data

Observed L/E Dependent Oscillation

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E_v}\right)$$

Clear energy-dependent disappearance of reactor antineutrinos

Projected Sensitivity of θ_{13} & Δm_{ee}^2

(submitted in PRL)

$$\sin^2 2\theta_{13} = 0.082 \pm 0.011$$

(~500 days)

 ± 0.005

(5 % precision)

(5 years of data)

* Expected precision of Δm_{ee}^2 : $\sim 0.1 \times 10^{-3} \text{ eV}^2$

(~ 4% precision)

(5 % precision)

(sensitivity goal of θ_{13})

Years

Why n-H IBD Analysis?

Motivation:

- 1. Independent measurement of θ_{13} value.
- 2. Consistency and systematic check on reactor neutrinos.

- * RENO's low accidental background makes it possible to perform n-H analysis.
 - -- low radioactivity PMT
 - -- successful purification of LS and detector materials.

Results from n-H IBD sample

Very preliminary Rate-only result

(B data set, ~400 days)

$$\sin^2 2\theta_{13} = 0.103 \pm 0.014$$
(stat.) ± 0.014 (syst.)

(Neutrino 2014) $\sin^2 2\theta_{13} = 0.095 \pm 0.015 \text{(stat.)} \pm 0.025 \text{(syst.)}$

← Significant reduction in the uncertainty of the accidental background and new results coming soon.

θ_{13} from Reactor and Accelerator Experiments

First hint of δ_{CP} combining Reactor and Accelerator data

Best overlap is for Normal hierarchy & $\delta_{CP} = -\pi/2$

Is Nature very kind to us? Are we very lucky? Is CP violated maximally?

Strong motivation for anti-neutrino run and precise measurement of θ_{13}

(T2K: PRL 112, 061802, 2014)

Summary

• New measurement of θ_{13} by rate-only analysis

$$\sin^2 2\theta_{13} = 0.087 \pm 0.009(\text{stat}) \pm 0.007(\text{syst})$$

- Observed an excess at 5 MeV in reactor neutrino spectrum
- Observation of energy dependent disappearance of reactor neutrinos and our first measurement of Δm_{ee}^2

Measurement of θ₁₃ from on n-H IBD analysis

$$\sin^2 2\theta_{13} = 0.103 \pm 0.014 \text{(stat)} \pm 0.014 \text{(syst)}$$
 (preliminary)

■ RENO: $sin(2\theta_{13})$ to 5% accuracy Δm_{ee}^2 to 0.1×10^{-3} eV² (4%) accuracy within 3 years