

Search for supersymmetry with the ATLAS detector in final states with

leptons, jets and missing transverse momentum

Claire A. David, on behalf of the ATLAS Collaboration University of Victoria

February 10, 2016

Lake Louise Winter Institute 2016

Searching for supersymmetry with ATLAS

Strong production may be dominant at LHC: gluino-gluino, squark-gluino, squark-squark

February 10, 2016

Analyses with 13 TeV LHC data

- *R*-parity conserved supersymmetry
- Lightest Supersymmetric Particle (LSP) = neutralino ${\widetilde \chi}_1^0 o$ dark matter candidate

3.2 fb⁻¹

- Direct pair production of gluinos
- Decay: $\widetilde{g} \to q \, \overline{q'} \, \widetilde{\chi}_1^{\pm}$. via virtual squark $1^{\rm st}$ and $2^{\rm nd}$ generations
- BR(SUSY decays) = 1

2 scenarios		2 channels	
$m ~\widetilde{g}$ free parameter $m ~\widetilde{\chi}^{0}$ set to 60 GeV	$m \widetilde{g}$ free parameter $m \widetilde{\chi}^{ 0}$ free parameter	" Hard " lepton p _T > 35 GeV	"Soft" lepton $6 \le p_T < 35 \text{ GeV}$
$x = \frac{m_{\widetilde{\chi}_{1}^{\pm}} - m_{\widetilde{\chi}_{1}^{0}}}{m_{\widetilde{g}} - m_{\widetilde{\chi}_{1}^{0}}}$	χ_{1} $m_{\widetilde{\chi}_{1}^{\pm}} = \frac{m_{\widetilde{g}} + m_{\widetilde{\chi}_{1}^{0}}}{2}$	Targets <mark>large</mark> mass splittings	Targets small mass splittings

- 6 independent signal regions to address the different mass hierarchies
- Best expected signal region used in each point of the parameter space

February 10, 2016

- Main backgrounds $t\bar{t}$ and $W\!\!+\!jets$, estimated using Monte Carlo
- 2 CRs per SR, where contribution of $t\bar{t}$ and W+jets normalized & extrapolated to SRs

• Excess in 6jet: in muon channel, 8 observed events, 2.5 \pm 0.8 predicted, local significance = 2.5 σ

• Model-dependent limits (limits for each SR shown in backup-slide)

ATLAS-CONF-2015-076

- Events selection: 2 leptons same-sign ($e^{\pm} e^{\pm}$, $e^{\pm} \mu^{\pm}$, $\mu^{\pm} \mu^{\pm}$) or 3 leptons
- Same sign leptons: occurs in many BSM scenarios, in SM \rightarrow very small cross sections

February 10, 2016

• 4 overlapping signal regions to maximize sensitivity

Backgrounds - <u>SS prompt $\geq 2\ell$ </u> : $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}h$, tZ, diboson, triboson \rightarrow Monte Carlo

- <u>Electron mismeasurement "charge flip"</u> \rightarrow weight OS data (small bkg)
- Fake or non-prompt leptons: data-driven "matrix method"

February 10, 2016

$Z + E_{\tau}^{miss} \rightarrow 2$ leptons

• Z boson produced in SUSY cascade \rightarrow decaying leptonically (electron / muon)

8 TeV Run 1

• 3.0 (1.7) σ excess in the ee (µµ) channel

13 TeV Run 2

- Decay $\ \widetilde{g} \
 ightarrow \ \widetilde{\chi}_2^0 \
 ightarrow \ \widetilde{\chi}_1^0$
- All other sparticles decoupled

• Different object definitions Run 2 (new tracking layer, new muon overlap removal)

February 10, 2016

$Z + E_{-}^{miss} \rightarrow 2$ leptons • Events in SR \geq 2 leptons, leading pair = same flavor opposite sign (SFOS): $e^{\pm}e^{\pm}$ or $\mu^{\pm}\mu^{\pm}$ E_T^{miss} [GeV] CR-FS (≠ flavor) CRT CRT SRZ • leading e/μ : $p_{\tau} > 50 \text{ GeV}$ 225 • subleading e/μ : $p_{\tau} > 25 \text{ GeV}$ **VR-FS** 200 • ≥ 2 jets VRS • High transverse sum H_{τ} VRT **VRT** VRZ Azimutal angle either jets • 100 $\Delta \phi(\mathrm{jet}_{1.2}, \boldsymbol{p}_{T}^{\mathrm{miss}}) > 0.04$ 60 + 2 VRs with 3ℓ $m \ell \ell$ [GeV] 121 61 81 101 + 1 VR with 4 ℓ

Backgrounds

- in SR 60% "flavor-symmetric" [$t\bar{t}$, WW, Wt, $Z \rightarrow \tau\tau$]: "flavor-symmetry" method $\rightarrow N_{ee/uu}$ estimated from data events in eµ control sample (\neq flavor) CR-FS
 - 30% WZ/ZZ + rare top processes \rightarrow MC estimated
 - Z/ γ^* +jets: peaks in Z window \rightarrow data driven method using γ +jets events

$Z + E_{\tau}^{miss} \rightarrow 2$ leptons

Results with 3.2 fb⁻¹

	SRZ
Observed events	21
Total expected background events	10.3 ± 2.3
Flavour symmetric $(t\bar{t}, Wt, WW \text{ and } Z \rightarrow \tau \tau)$	5.1 ± 2.0
WZ/ZZ events	2.9 ± 0.8
Z/γ^* + jets events	1.9 ± 0.8
Rare top events	0.4 ± 0.1
<i>p</i> -value	0.013
Significance	2.2
Observed (Expected) S ⁹⁵	$20.0(10.2^{+4.4}_{-3.0})$

- Predicted background = 10.3 ± 2.3
- Observed 21 events:
 - 10 data events in ee channel
 - 11 data events in $\mu\mu$ channel
- Local significance in SRZ = 2.2 σ

More data needed!

$Z + E_{\tau}^{miss} \rightarrow 2$ leptons

Summary

• 3 searches for supersymmetry with the ATLAS detector using $13\ TeV\ data$, $3.2\ fb^{\text{-1}}$

Gluino pair \rightarrow 1 lepton

- Direct gluino pair production
- \neq mass splittings \rightarrow 6 SRs
- Local 2.5 σ excess in 1 SR

- Large mass splitting: Gluinos excluded \rightarrow 1.6 TeV
- <u>Compressed spectra:</u> LSP excluded \rightarrow 870 GeV

Same-sign $2\ell + 3\ell$

- Direct pair production of gluino & sbottom
- 4 overlapping SRs
- For light LSP: Gluinos excl. $\rightarrow 1.1 - 1.6$ TeV Sbottom excl. $\rightarrow 525$ GeV
- For gluino ≈ 1 TeV: LSP excl. $\rightarrow 550 - 775$ GeV
- For sbottom \approx 540 GeV: LSP excl. \rightarrow 135 GeV

 $\mathsf{Z} + \mathsf{E}_{\scriptscriptstyle \mathsf{T}}^{\scriptscriptstyle \mathsf{miss}} \to 2 \text{ leptons}$

- Z boson produced through $\widetilde{g} \to \widetilde{\chi}_2^0 \to \widetilde{\chi}_1^0$
- Data-driven methods cross-checked with MC
- Excess of 2.2 σ in SR
- <u>Simplified model:</u> Gluinos excl. \rightarrow 1.1 TeV For $\widetilde{\chi}_2^0$ masses \approx 700 GeV

ATLAS-CONF-2015-076

ATLAS-CONF-2015-078

ATLAS-CONF-2015-082

February 10, 2016

To be continued with thicker data...

BACKUP SLIDES

Table 5: The number of observed data events and expected background contributions in the signal regions. The *p*-value of the observed events for the background-only hypothesis is denoted by p(s = 0). The "Rare" category contains the contributions from $t\bar{t}t\bar{t}$, $t\bar{t}t$ and $t\bar{t}WW$ production. Background categories shown as "–" denote that they cannot contribute to a given region (charge flips or $W^{\pm}W^{\pm}jj$ in 3-lepton regions). The individual uncertainties can be correlated and therefore do not necessarily add up in quadrature to the total systematic uncertainty.

-			
3	3	7	1
2.4 ± 0.7 0.33	0.98 ± 0.32 0.06	4.3 ± 1.0 0.12	0.78 ± 0.24 0.36
< 0.2 0.13 ± 0.06 1.5 ± 0.5 0.6 ± 0.4 0.09 ± 0.05	$\begin{array}{c} 0.04^{+0.17}_{-0.04}\\ 0.02 \pm 0.01\\ 0.11 \pm 0.06\\ 0.61 \pm 0.25\\ 0.11 \pm 0.05\\ < 0.14\\ 0.02 \pm 0.01\\ 0.01 \pm 0.01\\ \end{array}$	0.8 ± 0.8 0.60 ± 0.12 2.0 ± 0.7 0.17 ± 0.09 0.03 ± 0.01 < 0.03 0.02 ± 0.01	$\begin{array}{c} 0.12 \pm 0.16 \\ 0.19 \pm 0.06 \\ 0.21 \pm 0.09 \\ < 0.02 \\ < 0.01 \\ < 0.03 \\ < 0.01 \end{array}$
	3 2.4 ± 0.7 0.33 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 6: Signal model-independent upper limits on the visible signal cross-section ($\sigma_{vis} = \sigma_{prod} \times A \times \epsilon$) and on the number of BSM events (N_{BSM}) in the four SRs. The numbers (in parentheses) give the observed (expected) 95% CL upper limits. Calculations are performed with pseudo-experiments. The $\pm 1\sigma$ variations on the expected limit due to the statistical and systematic uncertainties on the background prediction are also shown.

	SR0b3j	SR0b5j	SR1b	SR3b
$\sigma_{\rm vis}^{\rm obs}$ [fb]	1.7	2.0	2.8	1.2
$N_{\rm BSM}^{\rm obs}~(N_{\rm BSM}^{\rm exp})$	$5.5(4.6^{+2.1}_{-0.8})$	$6.3 \ (3.6^{+1.4}_{-1.1})$	$8.9(5.8^{+2.6}_{-1.5})$	$3.7(3.5^{+1.3}_{-0.3})$