

Baryogenesis

David Morrissey

Lake Louise Winter Institute, February 10, 2016

Baryons in the Universe

- Ordinary Matter = almost all baryons, by mass.
- Problem: we don't even understand this!

Baryons in the Universe: Evidence

CMB Temperature Fluctuations:

$$\eta \equiv \frac{n_B}{n_\gamma} = (6.1 \pm 0.3) \times 10^{-10}$$

 \bullet Primordial Nucleosynthesis also takes η as an input.

• Consistent (mostly) with light element abundances.

Baryons and Antibaryons

- Suppose the early Universe contained equal numbers of baryons and antibaryons.
- These annihilate very efficiently down to $T \simeq 50 \, \text{MeV}$. Prediction:

$$\eta \sim 10^{-20}$$

Also, both baryons and antibaryons leftover today.

Clearly incorrect!

Baryons and Antibaryons

- Suppose instead that the early Universe contained $10^{10} + 1$ baryons for every 10^{10} antibaryons.
- Annihilation would remove nearly all the antibaryons.

$$+$$
 $=$ • $(10^{10}+1) B 10^{10} \overline{B}$ 1 B

- Prediction: $\eta \simeq 10^{-10}$, only baryons.
- But how do we explain the $1/10^{10}$ asymmetry?

Baryogenesis!

Baryogenesis Basics

Ingredients for Baryogenesis

[Sakharov '67]

1. B Violation:

 $|B=0\rangle \longrightarrow |B\neq 0\rangle$ obviously requires B violation

2. C and CP violation

Without violating both, B-violating processes would make just as many baryons as antibaryons

3. Departure from thermodynamic equilibrium

 $\langle B \rangle = constant$ in equilibrium

BG Ingredients and the Standard Model

- The Standard Model (SM) has all three ingredients:
 - spacetime expansion gives a departure from equilibrium
 - C is violated by the chiral fermion structure of the SM CP is violated by the phase in the CKM matrix
 - B is violated by non-perturbative processes!!!

B Violation in the SM

- ullet B and L seem like symmetries of the SM Lagrangian.
 - \Rightarrow expect current conservation: $\partial_{\mu}j_{B}^{\mu}=\partial_{\mu}j_{L}^{\mu}=0.$
- Quantum corrections with $SU(2)_L$:

$$\partial_{\mu}j_{B}^{\mu} = \partial_{\mu}j_{L}^{\mu} = n_{g}\frac{g^{2}}{32\pi^{2}}W_{\alpha\beta}^{a}\widetilde{W}^{b\,\alpha\beta} \qquad \mathbf{j}_{\mu} \otimes \mathbf{j}_{$$

But maybe we're still alright?

$$W^{a}_{\mu\nu}\tilde{W}^{a\,\alpha\beta} = \partial_{\mu}K^{\mu},$$

$$K_{\mu} = \epsilon^{\mu\nu\alpha\beta} \left[W^{a}_{\nu\alpha}W^{a}_{\beta} - \frac{g}{3}\epsilon_{abc}W^{a}_{\nu}W^{b}_{\alpha}W^{c}_{\beta} \right]$$

• Still contributes non-perturbatively . . .

ullet Non-Abelian gauge theories have multiple vacua characterized by the integer N_{CS} : [Belavin et al., Jackiw+Rebbi '76]

$$N_{CS} = \int d^3x \, \frac{g^2}{32\pi^2} K^0 \qquad (\in \mathbb{Z} \text{ by topology})$$

• Instantons = tunnelling between vacua: $\Delta N_{CS} \neq 0$.

• For each instanton transition, ['t Hooft '76]

$$\Delta B = \Delta L = n_g \, \Delta N_{CS}$$

• Instantons violate (B + L)!

• Instanton rate at zero temperature (T=0): ['t Hooft '76]

$$\Gamma_{inst} \propto e^{-16\pi^2/g_2^2} \simeq 10^{-320}$$

• At finite temperature T, $\Delta N_{CS} \neq 0$ transitions can go via classical thermal fluctuations. [Klinkhamer+Manton '84]

$$\Gamma_{sp} \sim \begin{cases} T^4 \, e^{-4\pi \langle H \rangle/g\,T} & \langle H \rangle \neq 0 \quad \text{[Arnold+McLerran '87]} \\ \kappa \, \alpha_w^5 \, T^4 & \langle H \rangle = 0 \quad \text{[Bodeker,Moore,Rummukainen '99]} \end{cases}$$

 $\langle H \rangle$ = Higgs field expectation value.

- Called "sphaleron transitions".
- Result: (B + L) violation is active in the early Universe for $T \gtrsim 100 \, \text{GeV}$ (when EW symmetry is unbroken).

Ingredients Are Not Enough

Baryogenesis requires a mechanism with these ingredients.

 We don't know of any mechanisms that work using the Standard Model alone.

Some Promising Mechanisms

- Leptogenesis
 - → BG related to the origin of neutrino masses
- Electroweak Baryogenesis
 - → BG created during the EW phase transition
- GUT Baryogenesis
 - → BG from B-violating decay of heavy GUT stuff
- Affleck-Dine
 - \rightarrow BG from rolling scalars carrying B charges
- Hidden Sector Asymmetric Baryogenesis
 - → BG in an exotic sector related to dark matter

Some Promising Mechanisms

- Leptogenesis
 - → BG related to the origin of neutrino masses
- Electroweak Baryogenesis
 - → BG created during the EW phase transition

Leptogenesis

Leptogenesis (and Neutrino Masses)

- We need new physics beyond the SM for neutrino masses.
- Minimal Requirement: new gauge singlet "RH" Neutrino N.

 Dirac Mass Term:

$$-\mathcal{L} \supset y_{
u} \bar{L} H N$$
 $o (y_{
u} v) \bar{L} N, \qquad \text{after} \quad H o v + h/\sqrt{2}$

H= Higgs breaking EW symmetry, $v=\langle H \rangle \simeq 174\,\mathrm{GeV}$

- Neutrino Mass: $m_{\nu} = y_{\nu}v$
- But $m_{\nu} \lesssim 1 \, \mathrm{eV}$ why is $y_{\nu} \sim 10^{-11}$ so small?

Alternative Option: Seesaw Mechanism (Type I)

[Mikowski; Gell-Mann, Ramond, Yanagida '79]

$$-\mathcal{L}\supset y_{
u}\bar{L}H\,N+rac{1}{2}M_{N}\bar{N}^{c}N$$

For $M_N \gg v$ integrate out the heavy RH state to give

$$-\mathcal{L}_{eff}\supsetrac{y_{
u}^{t}y_{
u}}{M_{N}}(ar{L}^{c}H)(LH)$$

• Light neutrino masses:

$$m_{\nu} = \frac{(y_{\nu}v)^2}{M_N}$$

- Gives $m_{\nu} \sim {\rm eV}$ for $y_{\nu} \sim 1$, $M_N \sim 10^{14} \, {\rm GeV}$.
- Note: N is Majorana so that $\bar{N} \sim N$.

Leptogenesis: Step #1 [Fukugita+Yanagida '86]

- Heavy neutrinos N_i (i = 1, 2, ...) decay in the early Universe.
- Two decay modes (related to neutrino masses):

$$N_i \rightarrow H + \ell_L \qquad (L = +1)$$

$$N_i \rightarrow H^* + \bar{\ell}_L \qquad (L = -1)$$

- ullet These decays violate lepton number L.
- Total decay width of N_i (i = 1, 2, ...):

$$\Gamma_{N_i} = \Gamma(N_i \to H + \ell_L) + \Gamma(N_i \to H^{\dagger} + \overline{\ell}_L)
= \frac{(y_{\nu}y_{\nu}^{\dagger})_{ii}}{8\pi} M_{N_i}$$

Leptogenesis: Step #2

ullet CP violation in N decays gives :

$$\epsilon_{1} \equiv \frac{\Gamma(N_{1} \to H\ell_{L}) - \Gamma(N_{1} \to H^{*}\overline{\ell}_{L})}{\Gamma(N_{1} \to H\ell_{L}) + \Gamma(N_{1} \to H^{*}\overline{\ell}_{L})}$$

$$\simeq \frac{3}{16\pi} \sum_{i>1} \frac{Im(y_{\nu}y_{\nu}^{\dagger})_{1i}}{(y_{\nu}y_{\nu}^{\dagger})_{11}} \qquad (M_{2}, \dots \gg M_{1})$$

• Non-zero ϵ_1 comes from tree-loop interference:

• Lepton Asymmetry from N_1 decays:

$$\eta_L = rac{n_L}{n_\gamma} \simeq \epsilon_1 \kappa$$

 κ = "efficiency factor"

- Non-zero κ requires out-of-equlibrium decays of N_1 . Decays occur mainly when $t=t_{decay}=1/\Gamma_{N_1}$.
- ullet If $T\gg M_{N_1}$ at t_{decay} , inverse decays drive N_1 to equilibrium. e.g. $\ell_L+H o N_1,$ $\bar\ell_L+H^* o N_1$
 - \Rightarrow asymmetry is washed out, $\kappa \to 0$.
- ullet If $T \ll M_{N_1}$ at t_{dec} , inverse decays are turned off.
 - $\Rightarrow N_1$ density can be larger than equilibrium, $\kappa \geq 1$.

Leptogenesis: Step #3

• Sphalerons are active at $T \gtrsim 100 \, \text{GeV}$.

They violate (B + L) and convert some L to B.

After sphaleron reprocessing, [Harvey+Turner '90]

$$\eta_B(final) = \mathcal{C} \left[\eta_B(initial) - \eta_L(initial) \right]$$

$$= -\mathcal{C} \eta_L(initial) \quad \text{(Leptogenesis)}$$

 $\mathcal{C} \sim 1$ depends on the degrees of freedom in the plasma

• Final Answer:

$$\eta_B = -\mathcal{C} \epsilon_1 \kappa$$

• BG Ingredients:

- $-C \neq 0$ requires B violation (sphalerons)
- $-\epsilon_1 \neq 0$ requires C and CP violation
- $-\kappa \neq 0$ requires departure from equilibrium

• Neutrino studies might give clues about leptogenesis.

Electroweak Baryogenesis

Electroweak Baryogenesis [Kuzmin, Rubakov, Shaposhnikov '85]

- Equilibrium can be lost during phase transitions.
- Really Important PT: electroweak symmetry breaking

$$SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$$

- Electroweak Baryogenesis (EWBG)
 - $\rightarrow B$ production during the electroweak PT
- Three Steps:
 - 1. First-order EWPT produces expanding bubbles.
 - 2. CP violation near bubbles creates a chiral asymmetry.
 - 3. Sphalerons reprocess this asymmetry into B.

The EW Phase Transition

• Order parameter \sim Higgs VEV $\langle H \rangle \equiv \phi$:

$$\langle H \rangle = 0 \Rightarrow SU(2)_L \times U(1)_Y$$
 is unbroken. $\langle H \rangle \neq 0 \Rightarrow SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$.

Effective potential:

$$V_{eff} \simeq (-\mu^2 + \xi T^2)\phi^2 + \frac{\lambda}{4}\phi^4 + \dots$$

Step 1: Bubble Nucleation

• First order phase transition:

• Bubbles of broken phase are nucleated at $T < T_c$.

Step 2: CP Violation and Chiral Asymmetries

• CPV in the bubble wall creates a chiral asymmetry. Chiral Asymmetry = n(LH quarks) - n(RH quarks).

Step 3: Making Baryons

- Chiral Asymmetry = n(LH quarks) n(RH quarks).
- Sphalerons $(SU(2)_L)$ only act on LH quarks.

These reduce the density of LH quarks but not RH quarks.

EWBG in the Standard Model and Beyond

- It does not work in the SM:
 - 1. The EW PT is not first-order for $m_h=125\,\mathrm{GeV}$. [Kajantie, Laine, Rummukainen, Shaposhnikov '98]
 - 2. Not enough effective CP violation.

 [Gavela, Hernandez, Orloff, Pené '94; Huet+Sather '95]

- EWBG can work with new physics beyond the SM.
 - e.g. Minimal Supersymmetric Standard Model (MSSM)
 - 1. A light scalar top partner can make the PT first-order. [Carena, Quirós, Wagner '96; Delepine, Gérard, Gonzalez, Wyers '96]
 - 2. SUSY breaking can give new sources of CP violation. [Carena, Quirós, Riotto, Vilja, Wagner '97; Cline+Kainulainen '97]

Phase Transition "Strength"

• Electroweak PT must be "strongly" first order to prevent sphaleron washout of B in the broken phase.

$$\Gamma \sim T^4 \exp(-8\pi \langle \phi \rangle/g_w T)$$

 \bullet For bubble nucleation near the critical temperature T_c :

$$rac{\langle \phi_c
angle}{T_c} \gtrsim 1.0$$

A Light MSSM Stop and the EW Phase Transition

Light (RH) stop coupling to the Higgs field:

$$-\mathcal{L}_{eff} \supset Q|H|^2|\tilde{t}_1|^2.$$

ullet The new coupling Q modifies the thermal Higgs potential:

$$V_{eff}(\phi, T) \simeq -(\mu^2 - \xi T^2)\phi^2 - \frac{T}{4\pi}Q^{3/2}\phi^3 + \frac{\lambda}{4}\phi^4$$

Large Q gives a strongly first-order phase transtion:

Strength
$$\sim rac{\phi_c}{T_c} \sim rac{Q^{3/2}}{\lambda} \geq 1$$
 .

ullet Only works for a very light stop, $m_{\widetilde{t}_1} \lesssim 150 \, \mathrm{GeV}.$

Light Stops and the Higgs

• $\sigma(gg \to h)$: constructive with top loop for Q > 0.

• $\Gamma(h \to \gamma \gamma)$: destructive with top loop for Q > 0.

Phase Transition vs. Higgs Rates

• MSSM EWBG: [Menon, DM '09; Cohen, DM, Pierce '12]

$$\sigma(gg o h) \ \gtrsim \ 1.6 imes SM$$
 $\sigma imes BR(h o \gamma \gamma) \ \gtrsim \ 1.3 imes SM$

• Inconsistent with measured Higgs rates.[Curtin, Jaiswal, Meade '12]

Direct Searches for Light Stops

• LHC searches rule out the light stop for MSSM EWBG.

EWBG Summary

ullet EWPT o bubbles o chiral asymmetry o baryons

- Does not work in the SM.
- Could work in the MSSM, but ruled out by LHC searches.
- Still viable in other SM extensions but strongly constrained.
- Also requires new CP violation: electric dipole moments?

Other Popular Baryogenesis Mechanisms

- GUT Baryogenesis (e.g. $SU(3)_c \times SU(2)_L \times U(1)_Y \subset G_{simple}$)
 - can have quarks and leptons in the same representation
 - heavy GUT decays can violate B, like leptogenesis
- Affleck-Dine Baryogenesis
 - excite scalar field directions carrying (B-L) charge
 - scalar condensates decay to particles with net B
- Asymmetric Dark Matter
 - $-\Omega_{DM}\simeq 5\Omega_{B}$ could they be related?
 - DM carries a net conserved charge related to B
 - density of DM set by the B charge asymmetry

Summary

- More matter than antimatter in the Universe.
- No known explanation within the Standard Model.
- Leptogenesis: baryon production from heavy neutrinos.
 - → may be related to neutrino masses and mixings
- Electroweak BG: baryon production during the EWPT.
 - → currently being tested at the LHC
- If we're lucky, we'll see evidence of new physics soon!

Extra Slides

Some Reviews

- A. Ritto, hep-ph/9807454
- M.Quirós, hep-ph/9901312 (electroweak BG)
- M. Dine, A. Kusenko, hep-ph/0303065
- W.Buchmüller, R. Peccei, T. Yanagida, hep-ph/0502169 (leptogenesis)
- A. Strumia, F. Vissani, hep-ph/0606054 (neutrinos and leptogenesis)
- J. Cline, hep-ph/0609145
- S. Davidson, E. Nardi, Y. Nir, hep-ph/0802.2962 (leptogenesis)
- DM, M. Ramsey-Musolf, hep-ph/1206.2942 (electroweak BG)

Simple Toy Model of Baryogenesis

- ullet Massive particles X and $ar{X}$ decay at $T \ll m_X$.
- Start with $n_X = n_{\bar{X}} \sim T^3 \gg n_X^{eq}$
 - → departure from thermodynamic equilibrium

• Decay modes:

$$X \to \begin{cases} A + B & ; B = B_1 \\ C + D & ; B = B_2 \end{cases}$$

 $\bar{X} \to \begin{cases} \bar{A} + \bar{B} & ; B = -B_1 \\ \bar{C} + \bar{D} & ; B = -B_2 \end{cases}$

 $B_1 \neq B_2$ requires B violation

Decay rates*:

$$\Gamma(X \to A + B) = \Gamma_{AB} + \Delta \Gamma_{AB}$$

$$\Gamma(X \to C + D) = \Gamma_{CD} - \Delta \Gamma_{CD}$$

$$\Gamma(\bar{X} \to \bar{A} + \bar{B}) = \Gamma_{AB} - \Delta \Gamma_{AB}$$

$$\Gamma(\bar{X} \to \bar{C} + \bar{D}) = \Gamma_{CD} + \Delta \Gamma_{CD}$$

C and CP violation needed for $\Delta\Gamma_{ij} \neq 0$

• $\Gamma_X^{tot} = \Gamma_{\bar{X}}^{tot}$ by CPT conservation.

$$\Rightarrow \Delta \Gamma_{AB} = \Delta \Gamma_{CD} \equiv \Delta \Gamma$$

* Recall that $BR(X \to ij) = \Gamma(X \to ij)/\Gamma_X^{tot}$

ullet Net baryon density produced by decays of X, $ar{X}$:

$$n_B = n_X \left[B_1 BR(X \to AB) + B_2 BR(X \to CD) - B_1 BR(\overline{X} \to \overline{AB}) - B_2 BR(\overline{X} \to \overline{CD}) \right]$$

$$= 2 \frac{\Delta \Gamma}{\Gamma_X} (B_1 - B_2) n_X$$

- $(B_1 B_2) \neq 0$ from B violation
- $\Delta\Gamma \neq 0$ requires C and CP violation
- $n_X\gg n_X^{eq}$ requires departure from equilibrium Decay of X at $T\ll m_X$ means that washout is turned off. (e.g. $A+B\to X^{(*)}\to \bar C+\bar D$ scatterings)