The long-baseline **V** oscillation experiment

The Charged-Current Cross Section on Water at the T2K Near Detector

on behalf of the T2K Collaboration

Lake Louise Winter Institute 2016 February 11th

The Tokai-2-Kamioka **V** experiment: T2K

first demonstration of appearance (first indication of non-zero θ_{13} , world best θ_{23}

High intensity, muon neutrino **beam** (or anti-ν), narrow band, peaked at oscillation maximum

NA61 at CERN measures the hadron production on a T2K replica target

The off-axis Near Detector: ND280

- Unoscillated v_µ and v_e measurements: constrain flux, cross section and background for oscillation
- Cross-section measurements on CH (active) and H₂O (same target of Super-Kamiokande)
- 50k v_{μ} events in 6.10²⁰ protons on target (POT) accumulated in neutrino beam mode

SMRD (Side **Muon Range Detector**)

• tag cosmic μ and side-exiting μ

Downstream **ECAL**

P0D (π^0 Detector)

- scintillator target which can be filled with water
- π^0 tagging

3 TPCs (Time Projection Chambers)

- gas Ar 95%
- momentum measurement in 0.18 T
- particle ID (dE/dx measurement)

2 FGDs (Fine-Grained **Detectors**)

- active CH target mass
- FGD2 interleaved with H₂O
- recoil protons detection

ECAL

(Electromagnetic calorimeters)

• detect y rays and tag π^0

Enrico Scantamburlo, University of Geneva

ND280 constraints for oscillation analyses

ND280 constraints for oscillation analyses

- Flux and interaction models constrained to 3% level except for uncertainties related to different target material of near vs far detector (CH vs H₂O)
- ND280 greatly improves predictions of event rates at Super-K using its fully active CH target, now is important to improve the constraints on water, using FGD2, the water target
 2014 analysis

2014 analy313				 ZUIS analysis			
T2K oscillation systematic (fractional) errors		v_{μ} sample 2014	ν _e sample 2014	v_{μ} sample 2015	ν _e sample 2015	* included	
ν flux		16%	11%	7.1%	8%		
v flux and cross section	without ND280 constraint	21.7%	26.0%	9.2%	9.4%	effects	
	WITH ND280 constraint	2.7%	3.2%	3.4%	3.0%	of mu	
independent cross sections (different nuclear targets)		5.0%	4.7%	*10%	*9.8%	lti-nuc	
Final State Interaction / Secondary Interaction at Super-K		3.0%	2.5%	2.1%	2.2%	cleon b	
Super-K detector		4.0%	2.7%	3.8%	3.0%	bound	
without ND280 constraints WITH ND280 constraints		23.5%	26.8%	14.4%	13.5%	states	
		7.7%	6.8%	*11.6%	*11.0%	tes	

Cross-section measurements at ND280

T2K is producing world-class measurements for a variety of neutrino interaction channels at few-GeV energies:

- **Cross section analyses at ND280**:
- Inclusive v_u Charged-Current (CC) Cross Section on carbon (Phys. Rev. D 87, 092003, 2013)
- Inclusive v_e CC Cross Section on carbon (Phys. Rev. Lett. 113, 241803, 2014)

v_u CC Quasi-Elastic Cross Section on carbon

(Phys. Rev. D 92, 112003, 2015)

- v_μ CC Coherent on carbon (preliminary)
- v_{μ} CC 0π on carbon (preliminary)
- v_{μ} CC $1\pi^{+}$ on carbon (preliminary)
- v_{μ} CC $1\pi^{+}$ on water (preliminary)
- many other work in progress
 - Inclusive v_u CC σ ^{water}/ σ ^{scint}

Scaling from C to O is not trivial

How to constrain separately flux and cross-section? \rightarrow Hard to deal with neutrino interaction theory

Charged-Current (CC)

1π⁺

cross section

in water FGD2

CC 1π⁺ on water FGD2

Signal: Charged-Current (CC) interaction with 1 π⁺, in water

$$\nu_{\mu} + N \to \mu^{-} + \pi^{+} + N'$$

Final State Interaction

Main contribution from

∆ resonance (and other due to FSI)

Event selection:

 $\begin{array}{c} \text{(intranuclear }\\ \text{cascade)} \\ \\ \text{reject}\\ \text{events}\\ \\ \text{with } \pi^{\text{0}}\\ \text{or } \pi^{\text{-}} \end{array}$

Event selection in water FGD2

CC 1π⁺ signal and background

- Dominant background:
 - CC $1\pi^+$ in scintillator
 - CC non- $1\pi^+$: 0π , $N\pi$, $1\pi^+$ +Nmesons (dominated by DIS)
- → Two control samples to constrain the background (MC agrees with data)

CC 1π⁺ results

- → Flux-integrated differential cross section with the Bayesian unfolding method of D'Agostini (arXiv:1010.0632 [physics.data-an])
 - in muon kinematics
 - in pion kinematics
 - in muon-pion angle
 - in reconstructed neutrino energy
- Suppression at low pion momentum and low pion angle (forward direction)

CC 1π⁺ results

- We can condense our measurement into one flux averaged point: also the total cross section is lower than the prediction for both GENIE and NEUT (MC neutrino generators)
- Both generators use the Rein-Sehgal Model, but with different tuning

(Aslo MINERvA observes that GENIE overestimates this channel)

Inclusive Charged-Current

$$\frac{\sigma^{water}}{\sigma^{scint}}$$
 and $\frac{d^2\sigma^{water}}{dp_{\mu}dcos\theta_{\mu}}/\frac{d^2\sigma^{scint}}{dp_{\mu}dcos\theta_{\mu}}$

Water measurements by subtraction

Use both FGD1 (fully active CH) and FGD2 (interleaved with water modules): very similar design meant to do subtraction analyses

- → FGD2 = ~ 400 Kg of water + 53% of FGD1 (in the fiducial volume) (errors on masses are 0.6 %, as built)
 - → The cross section on water can be achieved by subtraction

Inclusive CC $\sigma^{\text{water}}/\sigma^{\text{scint}}$ in FGD1+FGD2

- → flux normalization cancels
- → detector syst. cancels
- Inclusive CC sample
 - → high statistics
 - → high **purity** (strong signal, signal) only the muon matters)

aim for very small uncertainties and fine binning

(stat. 2.3% for total cross section, even smaller systematic errors)

Summary

- ND280 is essential to reduces the systematic uncertainties in the predicted event rate at Super-Kamiokande
- First exclusive $CC1\pi^+$ cross-section measurement in water indicates suppression in pion kinematics
- σ^{water} can be achieved by subtraction of cross sections from almost identical sub-detectors
- σwater / σscint will have very small uncertainties (< 3%)</p>
- Plenty more work to be done on neutrino cross sections! (If we are lucky, CPV may be around the corner...)

Thanks

500 people, 59 institute, 11 countries

