

H. A. TANAKA (UNIVERSITY OF TORONTO/IPP/TRIUMF) ON BEHALF OF THE HK PROTO COLLABORATION

HYPER-KAMIOKANDE

A NEXT GENERATION NEUTRINO OBSERVATORY TO SEARCH FOR CP VIOLATION IN THE LEPTON SECTOR

2016 LAKE LOUISE WINTER INSTITUTE

MATTER DOMINATED UNIVERSE

US

MATTER

figure courtesy of

H. Murayama

• Known sources of CPV (quark CKM) cannot produce this asymmetry

Further **exploration** and **elucidation** of possible CPV sources is critical

NEUTRINO OSCILLATIONS

$$\begin{split} \mathbf{v}_{\mu} &\rightarrow \mathbf{v}_{e} \text{ appearance} \\ P(\nu_{\mu} \rightarrow \nu_{e}) \sim & \sin^{2} 2\theta_{13} \times \sin^{2} \theta_{23} \\ & -\alpha \sin 2\theta_{13} \times \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \\ & +\alpha \sin 2\theta_{13} \times \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \\ & +\alpha^{2} \times \sin^{2} 2\theta_{12} \cos 2\theta_{23} \\ & +\alpha^{2} \times \sin^{2} 2\theta_{12} \cos 2\theta_{23} \\ \end{split} \\ \mathcal{A}_{CP} \propto \frac{\cos \theta_{23} \sin 2\theta_{12}}{\sin \theta_{23} \sin \theta_{13}} \sin \delta_{CP} \\ \mathcal{A}_{Freund, Phys.Rev. D64 (2001) 053003} \\ \end{split} \\ \alpha \equiv \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \sim \frac{1}{30} \\ \alpha \equiv \frac{\Delta m_{31}^{2}}{\Delta m_{31}^{2}} \sim \frac{1}{30} \\ \end{split} \\ \mathcal{A} \equiv \frac{\Delta m_{32}^{2} L}{4E} \\ x \equiv \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{32}^{2}} \end{split}$$

Observe/measure CP violation induced by δ_{CP} Possibility to resolve θ_{23} octant if $\neq \pi/4$

• *v*_µ disappearance

 $P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - \left(\cos^4 2\theta_{13} \sin^2 \theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}\right) \sin^2 \Delta \qquad \Delta \equiv \frac{\Delta m_{32}^2 L}{4E}$

Precision measurement of $2\theta_{23}$ and Δm^2_{31}

NEUTRINO ECONOMICS

More intense neutrino beam

400 kW → 750 kW →1.3 MW

Diameter 74m

$$N \propto \Phi_{\nu} \times V \times \rho \times \epsilon \times \sigma_{\nu}$$

Large Detector

• Super-Kamiokande →Hyper-Kamiokande

SUPER→HYPER KAMIOKANDE

(new) Baseline design:

- 2 large cylindrical tanks
 - staged construction with 2nd tank 6 years later
- 50 kT \rightarrow 516 kT total volume
 - 22.5 kT \rightarrow 374 kT fiducial volume (16x SK)
- 11k 20" PMTs → 80k 20" PMTS (40%)
 - ~2 x photodetection efficiency relative to SK

HYPER-KAMIOKANDE

- Improved detectors, higher density allow
 - improved performance
 - qualitatively new capabilities

- Smaller relative to previous design
 - 990 (560) kT volume with 20% photocathode area.
 - "High Density" photosensor:
 - same photocathode area as SK (40%)
 - large improvements in
 - detection efficiency (~2x SK)
 - timing resolution (2-3 ns \rightarrow 1 ns)

Very broad range of physics. Focus on v oscillations here

J-PARC MAIN RING UPGRADE

- Potential for high power neutrino running at J-PARC
 - Currently ~390 kW operations with 2.48 sec acceleration cycle
 - with power supply upgrade (1.3 sec cycle) equivalent to >740 kW beam
 - design power of 750 kW is within reach!
- MR power supply upgrade approved!
 - now looking to 1 MW power and beyond to 1.3 MW
 - investigating extended T2K run to ~2026 ("T2K Phase II")
 - prepare 1.3 MW beam for HK

The Long Baseline Program at Hyper-Kamiokande Intense ~600 MeV v_{μ} and \overline{v}_{μ} beams to study

- $(\overline{v}_{\mu}) \rightarrow (\overline{v}_{e})$ appearance and v_{μ} disappearance at HK
 - search for CP violation in neutrino oscillations
 - measure θ_{23} , Δm_{32}^2 to few percent (non-maximal? octant?)
- Sensitivities with 1.3 MW x 10 x 10^7 sec exposure
 - 2.7×10^{22} POT = 10 "Snowmass" years

Just one part of an rich physics program

WČ PRINCIPLE

$\nu_\ell + n \to \ell^- + p$

- Appears as single μ /e-like ring
- E_v by energy/direction of ring relative to beam
 - assumes CCQE kinematics

$\nu_{\ell} + (n/p) \rightarrow \nu_{\ell} + (n/p) + \pi^{0}$ $\nu_{\ell} + (n/p) \rightarrow \ell^{-} + (n/p) + \pi$

- π^0 : ring counting, 2-ring invariant mass
- μ/π^+ : ring counting, decay electron cut
- "intrinsic" v_e present in v beam (μ /K decay)

Improvements in π^0 rejection @ T2K \rightarrow irreducible v_e background is dominant

reducible

irreducible

Signal "CCQE"

Backgrounds

NEUTRINO OSCILLATIONS

Appearance v mode

 $\sin^2 2\theta_{13} = 0.1, \sin^2 \theta_{23} = 0.5, \delta = 0, NH$

13 MW x 10⁷s exposure

	SIGNAL ve/ve	W S v _e /v̄ _e	<i>v</i> _µ CC	BEAM _{Ve}	NC
v MODE	2300	21	10	362	188
v MODE	1656	289	6	444	274

- Dominant background is irreducible intrinsic beam v_e
 - $v_e \sim 2-3 \times \text{NC} \pi^0$ background
 - S/B ~ 10 at peak energy
- With ~large θ_{13} , systematics uncertainties on signal and intrinsic background v_e are important

NEAR DETECTOR CONCEPTS

- "TITUS" (2 km)
 - 2 kt WČ detector with HPDs and LAPPDs
 - minimize near/far flux differences
 - Gd for v/\overline{v} discrimination
 - Muon range detector, possibly magnetized (MIND) for sign selection of muons

• "nuPRISM" (1km)

- tall (~50 m) WČ detector spanning wide range of off-axis angles
- effectively isolate response in narrow bands of energy by comparing interactions at different off-axis angles
- replicate kinematic and other distributions for ~arbitrary neutrino energy spectra

SIGNATURE OF CP VIOLATION

Neutrino mode: appearance

Antineutrino mode: appearance

overall rate asymmetry between neutrino vs. antineutrino oscillations

• distortion of spectrum due to phase shift in either mode

CP VIOLATION SENS

With $1.3 \times 10 \times 10^7$ MW sec

- CP violation can be observed at
 - 3 σ for 80% values of δ_{CP}
 - 5 σ for 65% values of δ_{CP}
- δ_{CP} can be measured with
 - 7° precision for $\delta = 0$
 - 21° precision for $\delta = \pm \pi/2$

PROTON DECAY

лстооцYSICS NEUTR

8B+hep (BP2004 SSM)

only 8B

- Solar Neutrir
 - detect upti MSW trans

Mton yea

of events /

10⁵

10⁴

10³

10²

10

10⁻¹

- Expected definitively matter effe
- $(\tan^2 \theta, \Delta m^2) = (0.38, 8.3 \times 10^{-5})$ detection (

 detection (
 10⁻²
 sk-lifenergy resolution

 and Boltzmann equations [44, 45].
 We employ state of [44, 45].

 resolven at neutrino interaction rates [24, 45], argy thesholds (wev)
- gravity and redshift corrections [44, 46].
- Supernovate RbR+ description assumes the neutrino momentum distribution to be axisymmetric around the radial
 - detectiserprovatourstandentations frages are radial. The detectable energy-dependent neutrino Andromies da Galaxy hemisphere facing an observer is determined with a post-processing procedure that includes
 - O(100k)ojietiinvansenbetacolecare asticvscattering interactions for supernova at galactic center erties have been published [15]. Betails of the other two
 - probe simulations will be provided elsewhere [47]. All simula-probe supernova dynamics and neutrino tions used artificial random density perturbations of 0.1% properties ude on the whole numerical grid to seed the growth of hydrodynamic instabilities. None of the models had
- Much more det in an end of the Dry, geophysics, etc.) IceCube and Super-K, neutrinos are primarily detected by inverse beta decay, $\bar{\nu}_e + p \rightarrow n + e^+$, through Cherenkov radiation of the positron. We represent the neutrino

SUMMARY: SUPER→HYPER PHYSICS

- **Kamiokande:** 3/0.88 kT
 - observation of neutrinos from SN1987a (Nobel Prize 2002)
 - observation of solar neutrino deficit with directionality/real-time detector
 - observation of atmospheric neutrino deficit
- Super-Kamiokande: 50/22.5 kT
 - discovery of neutrino oscillations in atmospheric neutrinos (Nobel Prize 2015)
 - definitive resolution of solar neutrino problem with SNO
 - K2K: first confirmation of v_{μ} disappearance in LBL experiment
 - T2K (PHASE II): observation of v_e appearance, first constraints on δ_{CP} ,?
- Hyper-Kamiokande: 516/374 kT:
 - observation of CP violation in the lepton sector?
 - uncovering the underlying structure of mixing?
 - observation of proton decay? (10x current sensitivity)
 - $O(10^5)$ neutrinos from galactic supernova? intergalactic observation?

We're ready for the next step

BACKUP

STATUS

第22期学術の大型研究計画に関する

マスタープラン (マスタープラン 2014)

平成26年(2014年)2月28日 日本学術会議 科学者委員会 学術の大型研究計画検討分科会

- HK selected as one of top 27 projects of 192 in 2014 "Master Plan" of the Science Council of Japan
- KEK IPNS/ICRR MOU to promote Hyper-Kamiokande signed January 2015
 - international design review underway
- HK will be resubmitted this month to the Science Council of Japan with new baseline design.

