

Charged current v_{μ} and \overline{v}_{μ} interactions in the T2K off-axis near detector, ND280

Sam Short on behalf of the T2K Collaboration

Lake Louise Winter Institute February 2015

Outline

- Brief introduction to the T2K experiment
- ND280 data used to constrain flux and crosssection model parameters
 - Current samples: ν_{μ} in ν_{μ} beam
 - New samples: $\overline{\nu}_{\mu}$ in $\overline{\nu}_{\mu}$ beam
 - New samples: ν_{μ} in $\overline{\nu}_{\mu}$ beam (Understanding the $\overline{\nu}_{\mu}-$ mode beam composition)
- Current and future cross-section measurements

A brief recap of the T2K experiment

T2K Physics Goals

 $\nu_{\mu} \rightarrow \nu_{e}$ appearance : θ_{13} , δ $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance : θ_{23} , Δm^2_{23} v cross-section measurements

4

Tokai2Kamioka Experiment

Oscillation Analysis Strategy

Selecting v_{μ} Interactions

v_µ Samples for Constraints

For the joint appearance and disappearance oscillation analysis arXiv:1502.01550v1 [hep-ex]

- $(p, \theta)\mu$ distributions measured for each sample
- Float cross-section and flux parameters to find best fit

CC Res

1.5

2

2.5

3

• Reweight NEUT MC at far detector to reflect results of near detector measurements for each sample

DIS

21 February 2015

Events

400

350

300

250⊨

200⊢

150⊨

100F

50

0

0.5

* Data = Runs $1-4 = 5.47 \times 10^{20}$ protons on target

Sam Short

Impact of v_{μ} Constraints

Impact of v_{μ} Constraints

Effect of the near detector constraint on reconstructed neutrino energy at the far detector:

arXiv:1502.01550v1 [hep-ex]

21 February 2015

Study of new v_{μ} and \overline{v}_{μ} ND280 samples for constraints **Barrel ECAL** P0D **ECAL**

Selecting $\overline{\nu}_{\mu}$ interactions

$\overline{\nu}_{\mu}$ Samples for Constraints

Monte Carlo studies to select $\overline{\nu}_{\mu}$ charged current interactions in $\overline{\nu}_{\mu}$ beam (broken down by true interaction type)

Sam Short

Selecting ν_{μ} Component in $\overline{\nu}_{\mu}$ Beam

Sam Short

v_{μ} Component in \overline{v}_{μ} Beam

Monte Carlo studies to select v_{μ} charged current interactions in \overline{v}_{μ} (broken down by particle topology leaving the nucleus)

17

ND280 \sigma Measurements

$\nu_{\mu}~\sigma~on~Carbon$

Future ND280 v_{μ} σ Measurements (a selection)

Summary

- An exciting time for the T2K experiment
- Using many different samples (v_{μ} and \overline{v}_{μ}) to reduce the flux and cross-section uncertainties for the T2K oscillation analyses (for specifics stick around for Kikawa-san's talk up next)
- Many different cross-section measurements to be published in the near future

Thanks for listening

Supplementary Slides

Non-Zero θ_{13}

• Prior to 2011 limit set by CHOOZ: $\sin^2 2\theta_{13} < 0.17$

• Two ways of measuring θ_{13} : $P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2}}{4E}L\right)$

$$P(\overline{v}_e \to \overline{v}_e) \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2}{4E}L\right)$$

- June 2011: T2K announce an indication of non-zero θ_{13} (6 events, 2.5 σ)
- In 2012: Daya Bay and RENO confirm with over 5σ

Daya Bay 2012

Things We'd Like To Know...

(a non-exhaustive list!)

Parameters governing neutrino oscillations?

 $\theta_{12} \sim 34^{\circ}$, $\theta_{23} \sim 45^{\circ}$, $\theta_{13} \sim 9^{\circ}$, $\Delta m_{12}^2 \sim 7.6 \times 10-5 \text{ eV}^2$, $|\Delta m_{23}^2| \sim 2.4 \times 10-3 \text{ eV}^2$

 \sum CP-violating parameter δ ?

Neutrino mass hierarchy: normal or inverted?

Sterile neutrinos?

Tokai 2Kamioka Collaboration

~500 members, 59 institutes, 11 countries

Canada	Germany		
TRIUMF	Aachen U.		
U. Alberta			
UBC	Italy		
U. Regina	INFN U. Bari		
U. Toronto	INFN U. Napoli		
U. Victoria	INFN U. Padova		
U. Winnipeg	INFN U. Roma		
York U.			
France			
CEA Saclay			

IPN Lyon LLR E. Poly. LPNHE Paris

Japan **ICRR Kamioka** ICRR RCCN Kavali IPMU KEK Kobe U. Kyoto U. Miyagi U. Edu. Osaka City U. Okayama U. Tokyo Met. U. U. Tokyo

Poland IFJ Pan Cracow NCBJ Warsaw U. Silesia Katowice U. Geneva U. Warsaw Warsaw U. T. Wroklaw U. Russia INR Spain **IFAE** Barcelona IFIC Valencia

Switzerland ETH Zurich U. Bern United Kingdom Imperial Lancaster U. Oxford U. OMUL STFC/Daresbury STFC/RAL U. Liverpool **U.** Sheffield

U. Warwick

USA

Boston U. Colorado S. U. Duke U. Louisiana S. U. Stony Brook U. U. C. Irvine U. Colorado **U.** Pittsburg U. Rochester

U. Washington

Sam Short

21 February 2015

26

On-Axis Near Detector: INGRID

Interactive Neutrino GRID:

- 280m from target on beam axis
- 16 iron/scintillator module
- 1 scintillator tracking module
- Monitors beam centre, profile and neutrino flux

Far Detector: Super-K

- 50kton water Cherenkov detector (22.5 kton fiducial volume)
- Inner detector: ~11,000 20inch PMTs
- Outer detector: ~2,000 8inch PMTs

42m

Oscillation Analysis[™] Strategy

v_e Near Detector Constraints

- Measure intrinsic ν_{e} component of the beam
- Important background to ν_e appearance
- Expect: 1.2% contamination of v_e (from MC)

• Measure: Nv_e(data) / Nv_e(MC) = 1.01 ± 0.10

Impact of v_{μ} Constraints

v_{μ} disappearance

Parameter	Prior to ND280 Constraint	After ND280 Constraint
M _A ^{QE} (GeV)	1.21 ± 0.45	1.240 ± 0.072
M _A ^{RES} (GeV)	1.41 ± 0.22	0.965 ± 0.068
CCQE Norm. E _v <1.5 GeV	1.00 ± 0.11	0.966 ± 0.076
CCQE Norm. 1.5 <e,<3.5 gev<="" td=""><td>1.00 ± 0.30</td><td>0.93 ± 0.10</td></e,<3.5>	1.00 ± 0.30	0.93 ± 0.10
CCQE Norm. E _v >3.5 GeV	1.00 ± 0.30	0.85 ± 0.11
CC1 π Norm. E _v <2.5 GeV	1.15 ± 0.32	1.26 ± 0.16
CC1 π Norm. E _v >2.5 GeV	1.00 ± 0.40	1.12 ± 0.17
NC1π ⁰ Norm.	0.96 ± 0.33	1.14 ± 0.25

Ve	ар	реа	ran	ce
----	----	-----	-----	----

Parameter	Prior to ND280 Constraint	After ND280 Constraint
M _A ^{QE} (GeV)	1.21 ± 0.45	1.240 ± 0.072
M _A ^{RES} (GeV)	1.41 ± 0.22	0.965 ± 0.068
CCQE Norm.*	1.00 ± 0.11	0.966 ± 0.076
CC1π Norm.**	1.15 ± 0.32	1.26 ± 0.16
NC1π ⁰ Norm.	0.96 ± 0.33	1.14 ± 0.25
*For E _v <1.5 GeV	**For E _v <2.5 GeV	Sam Short

Antineutrino Event @ ND280

Interaction in FGD2 producing a +ve muon

v_{μ} CC-inclusive σ on Phys. Rev. D 87, 092003 (2013)

21 February 2015

v_e CC-inclusive σ on \widetilde{C}

Total flux averaged cross-section: $\langle \sigma \rangle \phi = 1.11 \pm 0.09(stat) \pm 0.18(syst) \times 10^{-38} \text{ cm}^2/\text{nucleon}$

v_e CC-inclusive σ on \widetilde{C}

Total flux averaged cross-section: $\langle \sigma \rangle \phi = 1.11 \pm 0.09(stat) \pm 0.18(syst) \times 10^{-38} \text{ cm}^2/\text{nucleon}$

INGRID σ on C & Fe

$$\begin{split} \sigma_{\rm CC}^{\rm Fe} &= (1.444 \pm 0.002(stat.)^{+0.189}_{-0.157}(syst.)) \\ &\times 10^{-38} {\rm cm}^2/{\rm nucleon}, \\ \sigma_{\rm CC}^{\rm CH} &= (1.379 \pm 0.009(stat.)^{+0.178}_{-0.147}(syst.)) \\ &\times 10^{-38} {\rm cm}^2/{\rm nucleon}, \text{ and} \\ \\ \frac{\sigma_{\rm CC}^{\rm Fe}}{\sigma_{\rm CC}^{\rm CH}} &= 1.047 \pm 0.007(stat.) \pm 0.035(syst.), \end{split}$$

- INGRID standard module \rightarrow Fe
- INGRID proton module \rightarrow CH
- Measure cross-section on different targets

