

Neutrino Cross Section and Interaction Rate Measurements involving Charged Current ν_e and Neutral Current π^0 with the T2K Near Detector

Jay Hyun Jo (Stony Brook University) on behalf of T2K Collaboration

February 21, 2015 Lake Louise Winter Institute 2015

T2K Experiment

- Neutrinos measured by near detectors (INGRID, ND280) and a far detector (Super-K)
- Precise measurement of ν_e appearance and ν_μ disappearance
- Currently running in anti-neutrino mode

T2K Data

- Maximum stable beam power recorded ~275kW recently
- Beam delivery
 - 8.7×10^{20} protons on target so far (~10% of approved P.O.T)
 - 6.9×10^{20} protons on target in ν -mode
 - 1.8×10^{20} protons on target in $\overline{\nu}$ -mode

ND280 Off-axis Detector

- Located at 2.5 degrees off-axis
- Off-axis gives 'narrow band' beam peak at 1st oscillation maximum, E~600MeV
 - Higher statistics of oscillated neutrinos
 - Reduced contamination from non-oscillated high energy neutrinos

Motivation for $CC\nu_e$ & $NC\pi^0$ analyses in ND280 $\stackrel{\mathbf{TZ}}{\longrightarrow}$

- The largest systematic uncertainty in T2K oscillation analysis comes from neutrino cross section error
- $\delta_{\sf cp}$ is searched through ν_e appearance channel
 - Better cross section measurements on C & H₂O are needed
 - Measurements only on C in ND280 were used in 2013 T2K oscillation analysis

<The uncertainty on the predicted number of ν_e/ν_μ events>

Error source [%]	ν_{μ} sample	ν_e sample
Beam flux and near detector	2.74	3.15
(w/o ND280 constraint)	(21.75)	(26.04)
Uncorrelated ν interaction	5.00	4.69
Far detector	4.03	2.72
FSI+SI+PN	2.98	2.44
Total	7.65	6.75

Super-Kamiokande

H₂O Target

Near Detector

C, H₂O Target

Inclusive v_e Charged Current Cross Section on Carbon

Inclusive ve Charged Current Cross Section on Carbon

 Select e track starting in **FGD**

 Use TPC & ECal PID to reject muons

- Main background comes from photon conversions
 - Constrain gamma background (from π^0) with e⁺e⁻ sample

K.Abe et al., Phys. Rev. Lett 113, 241803 (2014)

Inclusive v_e Charged Current Cross Section on Carbon

- Use Bayesian unfolding
 - Large smearing in momentum due to Bremsstrahlung
- Results with both full phase space and restricted phase space are presented
 - Reduces model dependence

Inclusive v_e Charged Current Cross Section on Carbon

K.Abe et al., Phys. Rev. Lett 113, 241803 (2014)

- Largest uncertainties are:
 - Flux (13.6%)
 - Statistics (8.6%)
 - Detector (8.4%)
- Total flux averaged cross-section:

-
$$\langle \sigma \rangle_{\varphi} = 1.11 \pm 0.09$$
 (stat) ± 0.18 (syst) x
$$10^{-38} \text{ cm}^2/\text{nucleon}$$

- First measurement of inclusive v_e cross section at the GeV scale
 - Only Gargamelle experiment measured the total v_e CC inclusive cross-section (1978)
 - Possible because of excellent detector with magnetic field
 - Published in Phys. Rev. Lett 113, 241803 (2014)

Charged Current ve Interaction Rate on Water

Charged Current v_e Interaction Rate on Water

- With water-in and water-out configurations, P0D is capable of on-water measurement
- The *largest* background to the v_e appearance at Super-K is the intrinsic v_e beam contamination
 - $E_{\nu} > 1.5 \text{GeV}$ is the region where the ν_e contamination is predominantly from K decay
- Use width based P0D PID to remove muon and neutral pion backgrounds

Charged Current v_e Interaction Rate on Water

- Data/MC ratio of on-water is measured to be:
 - $R_{\text{on-water}}$ = 0.87 ± 0.33 (stat.) ± 0.21 (syst.)
- Largest uncertainties are:
 - Statistics (0.33)
 - Detector Energy Scale (0.10)
 - Reconstruction Track PID (0.09)
- First rate measurement of $CC\nu_e$ interaction on water
- A paper will soon be submitted to Phys. Rev. D.

Neutral Current π^0 Production Rate on Water

Neutral Current π^0 Production Rate on Water \sim

- NC1 π^0 constitutes the second largest background to the data at Super-K
- Select two reconstructed EM-like objects that are assumed to be the resulting photons of a π^0 decay
- Shower separation cut introduced to get the cleanest reconstruction result

T2K

Neutral Current π^0 Production Rate on Water

- Data/MC ratio of on-water is measured to be:
 - $R_{\text{on-water}}$ = 0.677 ± 0.261 (stat.) ± 0.462 (syst.)
- Largest uncertainties are
 - Statistics (~26%)
 - Reconstruction Shower Separation (~11%)
 - Detector Energy scale (~6%)
- First rate measurement of $NC\pi^0$ production on water
- A paper will soon be submitted to Phys. Rev. Lett.

Summary

- Detailed understanding of the neutrino interactions is required for the future ν_e appearance precision measurements
- T2K Off-axis near detector allowed many exciting measurements recently
 - Inclusive v_e Charged Current cross section on carbon

$$\langle \sigma \rangle_{\varphi} = 1.11 \pm 0.09 \text{ (stat)} \pm 0.18 \text{ (syst)} \times 10^{-38} \text{ cm}^2/\text{nucleon}$$

- Charged current v_e interaction rate measurement on water
 - $R_{\text{on-water}} = 0.87 \pm 0.33 \text{ (stat.)} \pm 0.21 \text{ (syst.)}$
- Neutral current π^0 production rate measurement on water

-
$$R_{\text{on-water}} = 0.677 \pm 0.261 \text{ (stat.)} \pm 0.462 \text{ (syst.)}$$

- More measurements are coming soon!
- Near future: Anti-neutrino analysis on-going
- More T2K talks are up next, on T2K oscillation analysis (T. Kikawa) and $CC\nu_{\mu}$ analyses in ND280 (S. Short)

Backup

T2K Setup

Even more details on Detectors & Setup^[1]

1. J-PARC \gg 30 GeV proton to ν beam line \gg Focusing π^+ with Magnetic Horns

y x

Figure 11: INGRID on-axis detector

- **INGRID** » Measures ν beam profile and rate
 - » Monitors directly the ν beam direction and intensity by means of ν

interaction in iron

» Surrounded by veto scintillator planes to reject interaction o 16 module

utside each

Beam

3. ND280 Off-Axis Detector: \gg Measures the flux, E spectrum, ν_e contamination, a sections

» Requirements: a. Must provide info to determine at SK

- **b**. Must measure v_e content of the beam
 - **c**. Must measure v_{μ} interaction
- \rightarrow predict backgrounds to ν_e appearance (NC1 π)

 u_{μ}

T2K Setup

4. Super-Kamiokande: Water Cherenkov detector

- »50 kton water, ~11,000 PMT for Inner detector and ~2,000 for Outer det ector
- » Inner detector: 40% photo-cathode coverage
- » Outer detector: Active veto of cosmic ray μ and other backgrounds
- » Ring detection

J-PARC

J-PARC Neutrino beam facility

ND280 Off-axis detector Elements

ND280 Off-axis Detector

» ND280 is composed of:

- **I. PØD** » Measures neutral current process $(\nu_x + N \rightarrow \nu_x + N + \pi^0 + X)$ on H₂O target (Primary goal)
- II. TPC » Precise kinematic reconstruction of tracks with 0.2 T magnetic field » Particle ID
- III. FGD » Provide target mass for ν interaction» Tracking of charged particlecoming from interaction vertex

- IV. Ecal » Pb/scintillator tracking calorimeter for γ reconstruction and $e/\mu/\pi$ identification
- **V. SMRD** » Records μ escaping with scintillator planes

P0D Detector

Flux and Uncertainties

Inclusive v_e Charged Current Cross Section on Carbon: Systematics

$Q^2 \left(\text{GeV}^2/c^4 \right)$	Data stat.	MC stat.	Detector	Flux + x-sec	OOFV	Total
0.00-0.03	22.4	7.9	16.6	21.7	0.3	36.2
0.03 – 0.06	16.2	6.6	12.9	16.7	0.9	27.4
0.06 – 0.10	13.2	5.2	10.8	15.6	0.9	23.7
0.10 – 0.16	11.4	4.6	9.2	14.5	0.9	21.1
0.16 – 0.24	9.7	4.4	7.8	14.5	0.7	19.6
0.24 – 0.36	9.0	3.8	7.8	14.2	0.6	18.9
0.36 – 0.58	8.8	3.3	7.8	13.7	0.5	18.4
0.58 – 1.00	9.5	3.4	7.4	13.4	0.4	18.3
> 1.00	12.4	4.0	9.2	15.6	0.8	22.3
Total	8.6	2.6	8.4	13.6	0.5	18.4

Charged Current v_e Interaction Rate on Water: Width PID

Charged Current v_e Interaction Rate on Water: Systematics

Systematic Uncertainty for $CC\nu_e$ Data/MC Ratio	R_{water}	$R_{\rm air}$	$R_{\text{on-water}}$
MC Statistics	0.03	0.04	0.12
Bias Analysis Method	0.00	0.00	0.02
PØD Mass	0.01	0.01	0.01
PØD Fiducial Volume	< 0.01	< 0.01	< 0.01
PØD Alignment	< 0.01	< 0.01	< 0.01
Energy Scale	0.05	0.05	0.10
Hit Matching	< 0.01	< 0.01	< 0.01
Track PID	0.05	0.05	0.09
Energy Resolution	< 0.01	< 0.01	0.01
Angular Resolution	< 0.01	< 0.01	0.01
Track Median Width	< 0.01	< 0.01	< 0.01
Shower Median Width	0.04	0.04	0.08
Shower Charge Fraction	0.01	0.04	0.04
Flux and Cross Sections Pre-Fit	0.22	0.26	0.17
Flux and Cross Sections Post-Fit	0.07	0.09	0.06
Total with Pre-Fit	0.24	0.28	0.27
Total with Post-Fit	0.11	0.13	0.21

Neutral Current π^0 Production Rate On Water: Shower Separation

(a) Water-in configuration.

(a) Sample X-Z projection

(b) Water-out configuration

(b) Sample Y-Z projection

Neutral Current π^0 Production Rate On Water: Systematics

Parameter	Uncertainty		
	Water	Air	
Geometry Differences	2.8%	2.8%	
PE Peak Discrepancy	0.6%	0.4%	
Energy Scale	4.4%	0.6%	
Detector Variations	< 0.1%	< 0.1%	
PØD Response	1.8%	1.8%	
Mass Uncertainty	0.5%	0.9%	
Alignment	< 0.1%	< 0.1%	
Fiducial Volume Scaling	1.5%	2.0%	
Fiducial Volume Shift	1.1%	1.7%	
Flux and Event Generator	2.9%~(1.5%)	3.7%~(1.9%)	
Track PID Efficiency	5.4%	5.1%	
Shower Separation	10.9%	13.5%	
PID Weight	8.1%	3.4%	
Charge In Shower	7.8%	3.0%	
g Factor (statistical)	3.8%	4.2%	
Total Systematic	18.2%(18.0%)	16.7%(16.4%)	
g Factor (systematic)	16.4%	23.2%	