Study of baryonic decays of B mesons Lake Louise Winter Institute 2015

Miriam Heß, University of Rostock for the BABAR Collaboration

February 19, 2015

Motivation to study baryonic decays of B mesons

- Decays of B mesons into final states with baryons: $\sim 7\%$ of the total decay width $_{\rm Z.~Phys.~C56~(1992)~1}$
- Large mass of the ${\cal B}$ meson allows big variety of baryons in the final state

Hadronisation = Strong interaction

- Mechanism of the baryon production process unknown
- Study of baryonic ${\cal B}$ decays provides information for testing phenomenological models
- Investigation of quark fragmentation at low Q^2 values

Motivation to study baryonic decays of B mesons

Observed features

- Baryon-antibaryon threshold enhancement
 - Increased decay rate for low baryon-antibaryon invariant masses with respect to phase space model
- Large contributions to the total branching fraction from decays with intermediate states, e.g.

$$\frac{\mathcal{B}(\overline{B}{}^0 \to \Sigma_c(2455)^{++}\overline{p}\pi^-)}{\mathcal{B}(\overline{B}{}^0 \to \Lambda_c^+\overline{p}\pi^-\pi^+)} \approx 17\%$$

Phys. Rev. D 87 (2013) 9

Threshold enhancement

- Variety of models to describe threshold enhancement
 - Pole model

e.g. Phys. Rev. D 66 (2002) 014020

- Final-state interaction e.g. Phys. Rev. C 68 (2003) 052201
- Glueball

e.g. Phys. Rev. D 66 (2002) 054004

Bound state

e.g. Phys. Lett. B 567 (2003) 273 Study of baryonic decays of B mesons (M. Heß)

$$\overline{B}{}^0 \to \Lambda_c^+ \overline{p} \pi^0$$

 $\rightarrow \Lambda \overline{p} \pi^+$

GeV/c²

500

300

0

 \overline{B}^0

Phys. Rev. D 79 (2009) 112009

3.5

BABAR

4.5

 $m_{\overline{A}n}$ (GeV/c²)

Presented analysis: $\overline{B}^0 \to \Lambda_c^+ \overline{p} K^- K^+$

Phys. Rev. D 91 (2015) 031102 (R)

• Comparison to similar decay: $\overline B{}^0 o \Lambda_c^+ \overline p \pi^- \pi^+$

 $\mathcal{B}(\overline{B}{}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+) = (1.17 \pm 0.23) \times 10^{-3}$

Chin. Phys. C 38 (2014) 090001

- LUND model: The heavier mass of the s quark suggests a supression faction of 1/3 for $\overline{B}^0 \to \Lambda_c^+ \overline{p} K^- K^+$ compared to $\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+$ Phys. Rep. 97 (1983) 31
- LUND model consistent for $\overline{B}{}^0 \to D^0 A \overline{A}$ relative to $\overline{B}{}^0 \to D^0 p \overline{p}$:

expected:
$$\frac{\mathcal{B}(\overline{B}^0 \to D^0 \Lambda \overline{\Lambda})}{\mathcal{B}(\overline{B}^0 \to D^0 p \overline{p})} \sim \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{12}$$

measured :
$$\frac{\mathcal{B}(\overline{B}^0 \to D^0 \Lambda \overline{\Lambda})}{\mathcal{B}(\overline{B}^0 \to D^0 p \overline{p})} = \frac{1}{10.6 \pm 3.8}$$

Phys. Rev. D 89 (2014) 112002

$$\overline{B}{}^0 \to \Lambda_c^+ \overline{p} K^- K^+$$

• Signal extraction via 2D fit to the energy-substituted mass $m_{\rm ES}$ versus invariant mass m_B

$$N = 66 \pm 12$$

 $m_{\rm ES}$ projection

Statistical significance:

$$S = \sqrt{-2\log\left(L_0/L_{\rm sig}\right)} = 5.4\,\sigma$$

Threshold enhancement

- Distribution of signal events compared to phase space model scaled to the same integral
- Enhancement not significant for $\overline{B}{}^0 \to \Lambda_c^+ \overline{p} K^- K^+$ but trend of data consistent with small threshold enhancement

$\Lambda_c^+ \overline{p}$ invariant mass

- Division of the baryon-antibaryon invariant mass range into two regions
- Efficiencies:

 $\varepsilon_I = (10.93 \pm 0.08)\%,$ $\varepsilon_{II} = (11.47 \pm 0.07)\%$

Branching fraction of $\overline{B}{}^0 \to \Lambda_c^+ \overline{p} K^- K^+$:

 $\mathcal{B}\left(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{p} K^{-} K^{+}\right) = \left(2.5 \pm 0.4_{(\text{stat})} \pm 0.2_{(\text{syst})} \pm 0.6_{\left(\Lambda_{c}^{+}\right)}\right) \times 10^{-5}$

Resonances

- Background substracted signal distribution compared to phase space model of $\overline{B}{}^0 \rightarrow \Lambda_c^+ \overline{p} K^- K^+$ scaled to the same integral
- Hint for resonance in the kaon-kaon invariant mass (\u03c6)
- No evidence for other resonances, e.g. $\overline{A}(1520)$
- Calculate upper limit for the decay $\overline{B}{}^0 \to \Lambda_c^+ \overline{p} \phi$ at 90% confidence level

$$\mathcal{B}\left(\overline{B}{}^{0}\to\Lambda_{c}^{+}\overline{p}\phi\right)<1.2\times10^{-5}$$

Interpretation

- Compare $\overline{B}{}^0 \to \Lambda_c^+ \overline{p} K^- K^+$ to $\overline{B}{}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+$
- Contribution of different intermediate resonant states

$$\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+)_{\text{non-res}} \lesssim 50\% \cdot \mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+) = 6 \cdot 10^{-4}$$
$$\frac{\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} K^- K^+)}{\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+)_{\text{non-res}}} \gtrsim \frac{2.5 \cdot 10^{-5}}{6 \cdot 10^{-4}} = \frac{1}{24} < \frac{1}{3}$$

- Other contributions than $s\overline{s}$ suppression:
 - $\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^- \pi^+$ has contributions from Feynman diagrams that are not possible for $\overline{B}^0 \to \Lambda_c^+ \overline{p} K^- K^+$

Phys. Rev. D 91 (2015) 031102(R)

• First observation of the decay $\overline B{}^0\to \Lambda_c^+\overline p K^-K^+$ with a branching fraction of

$$\mathcal{B}\left(\overline{B}{}^{0} \to \Lambda_{c}^{+} \overline{p} K^{-} K^{+}\right) = \left(2.5 \pm 0.4_{(\text{stat})} \pm 0.2_{(\text{syst})} \pm 0.6_{\left(\Lambda_{c}^{+}\right)}\right) \times 10^{-5}$$

- Trend of a threshold enhancement in the baryon-antibaryon invariant mass
- Upper limit for the decay $\overline B{}^0 o \Lambda_c^+ \overline p \phi$ at 90% confidence level

$$\mathcal{B}\left(\overline{B}{}^{0} \to \Lambda_{c}^{+} \overline{p} \phi\right) < 1.2 \times 10^{-5}$$

BACKUP

The BABAR experiment

Investigation of features of B mesons and their decays

PEP-II: asymmetric B Factory

•
$$e^+e^-$$
 storage ring:
 $E_{e^-} = 9.0 \text{ GeV}, E_{e^+} = 3.1 \text{ GeV}$

• Center-of-mass energy $\sqrt{s} \approx 10.58 \,\text{GeV} \sim m_{\Upsilon(4S)} \sim 2 \cdot m_B$

•
$$e^+e^- \to \Upsilon(4S) \to B\overline{B}$$

• $471 \cdot 10^6 \ B\overline{B}$ pairs (2000 - 2007)

Positrons Low Energy Ring BABAR Detector High Energy Ring

The BABAR detector

• Measurement of decay products: p, K, π, e, μ und γ

BABAR Detector

BABAR variables

$$m_B = \sqrt{E_B^{*2} - p_B^{*2}} \qquad \sqrt{s} \sim m_{\Upsilon(4S)} \sim 2m_B$$
$$E_B^{*2} = \frac{\sqrt{s}}{2}$$
$$\Delta E = E_B^* - \frac{\sqrt{s}}{2} \qquad m_{\rm ES} = \sqrt{\left(\frac{\sqrt{s}}{2}\right)^2 - p_B^{*2}}$$

 m_{ES} and m_B are uncorrelated

Study of baryonic decays of B mesons (M. Heß)

Fit function

• Fit function used to determine the number of signal events

$$\begin{split} f_{\text{fit}} &= N_{\text{sig}} \cdot \mathcal{S}(m_{\text{ES}}, m_B) + N_{\text{bkg}} \cdot \mathcal{B}(m_{\text{ES}}, m_B) \\ &= N_{\text{sig}} \cdot f_{\text{2G}}(m_{\text{ES}}) \cdot f_{\text{2G}}(m_B) \\ &+ N_{\text{bkg}} \cdot f_{\text{ARGUS}}(m_{\text{ES}}) \cdot f_{\text{poly}}(m_B) \end{split}$$

- $\bullet~N_{\rm sig}$ and $N_{\rm bkg}$ are the number of signal and background events
- ${\mathcal S}$ and ${\mathcal B}$ the corresponding probability density functions
- Extended likelihood function

$$L(N_{\text{sig}}, N_{\text{bkg}}) = \frac{e^{-(N_{\text{sig}}+N_{\text{bkg}})}}{N!} \prod_{i=1}^{N} [N_{\text{sig}} \mathcal{S}_i(m_{\text{ES}i}, m_{Bi}) + N_{\text{bkg}} \mathcal{B}_i(m_{\text{ES}i}, m_{Bi})]$$

• *i* denotes the *i*th candidate

• N is the total number of events in the fit region $_{\rm Study \, of \, baryonic \, decays \, of \, B \, mesons \, (M. \, {\rm HeB})}$

Feynman diagrams

Feynman diagrams

Additional Feynman diagrams $\overline{B}{}^0 \rightarrow \Lambda_c^+ \overline{p} \pi^- \pi^+$

