

Search for Exotic Decays of the Higgs Boson with the ATLAS Detector

Lake Louise Winter Institute 2015

February 16, 2015

Rami Vanguri University of Pennsylvania On behalf of the ATLAS Collaboration

Rami Vanguri (University of Pennsylvania)

Rare Decays of the Higgs Boson

• $H \rightarrow Invisible$ • Physical Review Letters 112, 201802 (2014)

- Coupling to dark matter candidate
- ▶ $H
 ightarrow J/\psi \, \gamma, \Upsilon(nS) \, \gamma$ → Submitted to PRL arXiv:1501.03276
 - Only way to measure Yukawa second generation quark coupling to c
 - First results from a search at the LHC
- \blacktriangleright $H
 ightarrow \mu \mu$ ightarrow Physics Letters B 738 (2014) 68-86
 - Second generation lepton coupling
- \blacktriangleright $H
 ightarrow Z \gamma$ ightarrow Physics Letters B 732C (2014) 8-27
 - ► Loop sensitive to new physics (similar to $H \rightarrow \gamma \gamma$ but with lower background)
 - Suppressed by $Z \rightarrow \ell \ell$ branching fraction

Rami Vanguri (University of Pennsylvania)

$H \rightarrow$ Invisible

Rami Vanguri (University of Pennsylvania)

Exotic Higgs Decays with ATLAS

February 16, 2015 3 / 15

$H \rightarrow$ Invisible: Physics Motivation

- SM extensions can allow the Higgs to decay to stable or long-lived particles not observed in the detector, e.g. dark matter
- Place limit on invisible branching fraction
- Higgs portal model used to set limit on dark matter nucleon cross section
 - Assumes DM interacts with SM only through Higgs exchange

$H \rightarrow$ Invisible: Analysis Motivation

- Also in progress is VH with $V \rightarrow jj$
- Will focus on *ZH* with $Z \rightarrow \ell \ell$

- ▶ $pp \rightarrow H$: No objects in H+0jet, H+jets has large irreducible $Z \rightarrow \nu\nu$ +jets background
- $pp \rightarrow qqH$: In progress
- ▶ $pp \rightarrow WH$: Invisible particle from the $W \rightarrow \ell \nu$ decay makes discrimination from $W \rightarrow \ell \nu$ +jets background difficult
- *pp* → *ZH*: *Z* → ℓℓ decay provides identifiable objects
- $pp \rightarrow ttH$: Potentially sensitive

$Z(H \rightarrow \text{Invisible})$: Analysis Strategy

- Analysis cuts designed around the idea that the Z ($\ell\ell$ system) recoils off of the H (E_T^{miss}) for signal
- Most important background is Drell-Yan (Z) production with fake E^{miss}_T from mismeasured jets which is hard to estimate from MC
 - Estimated by 2 dimensional sideband fit of events failing one or both *

Requirement	Justification			
$76 < m_{\ell\ell} < 106 { m GeV}$	Dilepton system consistent with $Z \rightarrow \ell \ell$			
$E_T^{miss} > 90 { m GeV}$	Requiring the H to have p_T forces the Z to also have p_T			
E ^{miss} Cleaning Cuts				
$\Delta \phi_{\ell,\ell} < 1.7$	Boosted Z has leptons close together			
$\Delta \phi_{Z,E_T^{miss}} > 2.6$	Z and H should be back-to-back			
$\Delta \phi(E_T^{miss}, E_T^{miss, track}) < 0.$	E_T^{miss} not correlated for background (E_T^{miss} from mismeasured jets) *			
$ E_T^{miss} - p_T^{\ell\ell} /p_T^{\ell\ell} < 0.2$	Balance of Z and H momentum $*$			
Central Jet Veto	Drell-Yan background tends to have one or more jets			
ni Vanguri (University of Pennsylv	nia) Exotic Higgs Decays with ATLAS February 16, 2015 6 /			

$Z(H \rightarrow \text{Invisible})$: Analysis Strategy

• E_T^{miss} after $m_{\ell\ell}$

• $Z \rightarrow \ell \ell$ has steeply falling tail with high uncertainty

Rami Vanguri (University of Pennsylvania)

$Z(H \rightarrow \text{Invisible})$: Analysis Strategy

 \blacktriangleright E_T^{miss} after $m_{\ell\ell}$ and E_T^{miss} cleaning

• $ZZ \rightarrow \ell \ell \nu \nu$ (irreducible) now dominant background

Rami Vanguri (University of Pennsylvania)

$Z(H \rightarrow \text{Invisible})$: Results

- Upper limit set on the branching fraction of H to invisible particles at 75% (expected 62%) at 95% confidence
- Complementary with direct detection experiments
 - Model-based interpretation: Only true in Higgs portal (sensitivity drop at $\frac{1}{2}m_H$)

$H \rightarrow J/\psi \gamma \text{ and } H \rightarrow \Upsilon(nS) \gamma$

Rami Vanguri (University of Pennsylvania)

Exotic Higgs Decays with ATLAS

February 16, 2015 10 / 15

 $H \rightarrow J/\psi \gamma, \Upsilon(nS) \gamma$: Physics Motivation

 $\blacktriangleright~H \rightarrow J/\psi~\gamma$ the only feasible way to probe charm Yukawa coupling

- Rare decay $Br(H \rightarrow J/\psi \gamma) < 2.8 \pm 0.2 \times 10^{-6}$
- First results from an LHC search
- $H \rightarrow \Upsilon(nS) \gamma$ similarly probes bottom Yukawa coupling
 - Significantly lower $Br(H \rightarrow \Upsilon(1S) \gamma) < 8.4^{+19.3}_{-8.2} \times 10^{-10}$
- Analysis also probes Z → J/ψ γ, Υ(nS) γ (improved LEP limits by 2 orders of magnitude)
- Deviations in coupling from SM value can lead to increase in branching fraction
- \blacktriangleright Will focus on $H \rightarrow J/\psi \; \gamma$ since it has much higher sensitivity

$H \rightarrow J/\psi \gamma$: Background Composition

Dominant Backgrounds

- ► 56% Prompt J/ψ : Peaks in $m_{\mu\mu}$
 - $gg \rightarrow J/\psi g$ where g (jet) is misidentified as a γ
 - Suppressed by requiring γ be isolated since there is usually hadronic activity around a jet
- 41% Non-resonant: Smooth in $m_{\mu\mu}$
 - Production of a di-muon pair with invariant mass close to J/ψ

Background is modeled using templates to describe kinematic regions in several control regions.

Rami Vanguri (University of Pennsylvania)

$H \rightarrow J/\psi \gamma$: Results

► Upper limit set on branching fraction of $H \rightarrow J/\psi \gamma$ at 95% confidence $Br(H \rightarrow J/\psi \gamma) < 1.5 \times 10^{-3}$ (expected $1.2^{+0.6}_{-0.3} \times 10^{-3}$) $\approx 540 \times SM$ Expectation

13 / 15

Summary and Future of Exotic Higgs Decays

Rami Vanguri (University of Pennsylvania)

Exotic Higgs Decays with ATLAS

February 16, 2015 14 / 15

Exotic Higgs Decays in Run I and Beyond

- Run I
 - Standard Model
 - $Br(H \rightarrow J/\psi \gamma) < 540 \times$ SM Expectation
 - $Br(H \rightarrow Z\gamma) < 17.4 \times$ SM Expectation
 - $Br(H \rightarrow \mu\mu) < 7.0 \times$ SM Expectation
 - Exotic
 - $Br(H \rightarrow \text{Invisible}) < 75\%$
- Future Sensitivity of ATLAS (High Luminosity LHC)

Luminosity	$H \rightarrow Z\gamma$	$H ightarrow \mu \mu$	H ightarrow Invisible
300fb ⁻¹	2.3σ	2.3σ	Br < 23%
3000fb ⁻¹ HL-LHC	3.9 σ	7.0 σ	Br < 8%

ATL-PHYS-PUB-2014-006 ATL-PHYS-PUB-2013-014 ATL-PHYS-PUB-2013-014

 Cross sections could be enhanced by BSM scenarios which can yield earlier interesting results

Rami Vanguri (University of Pennsylvania)

Exotic Higgs Decays with ATLAS

February 16, 2015 15 / 15

Backup

Rami Vanguri (University of Pennsylvania)

Exotic Higgs Decays with ATLAS

February 16, 2015 16 / 15

$H \rightarrow J/\psi \gamma, \Upsilon(nS) \gamma$: Analysis Strategy

Loose Selection

$H ightarrow J/\psi \ \gamma$	$\Upsilon(nS) \gamma$			
Single high p_T muon trigger	Single muon or dimuon trigger			
2 μ with $p_T^{\mu} > 3 ext{GeV}$ and $ \eta^{\mu} < 2.5$				
leading $p_T^\mu > 20$ GeV				
both muons from the same vertex				
$ m_{\mu\mu}-m_{J/\psi} < 0.2$ (tightened to 0.15 if $ \eta^{\mu} < 1.05 $)	$8.0 < m_{\mu\mu} < 12.0 { m GeV}$			
$p_T^{\mu\mu} > 36 { m GeV}$				
Surrounding tracks required to be $< 10\%$ of p_T^μ				
$p_T^\gamma > 36 { m GeV}$				
Surrounding tracks required to be $<$ 8% of p_T^γ				

- Tight selection requires $\Delta \phi(Q, \gamma) > 0.5$
- Blinded data with 120GeV $< m_{\mu\mu\gamma} <$ 130GeV

Rami Vanguri (University of Pennsylvania)