Measurements of CP Violating Phases in B Decays

Kristof De Bruyn On behalf of the LHCb Collaboration

Lake Louise Winter Institute 2015 February 19th, 2015

The LHCb Detector

Forward arm spectrometer to study b- and c-hadron decays

• Pseudo-rapidity coverage: $2 < \eta < 5$

- Good impact parameter resolution to identify secondary vertices: 20 µm
- Decay time resolution: 46 fs $(B_s^0 \rightarrow J/\psi \, K^+ K^-)$
- ► Invariant mass resolution: 8 MeV/ c^2 ($B \rightarrow J/\psi X$) 22 MeV/ c^2 ($B \rightarrow hh$)
- Excellent particle identification:
 95 % K ID efficiency (5 % π → K mis-ID)
- Versatile & efficient trigger for b- and c-hadrons and forward EW signals

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Measuring CP Violation: Interfering Paths

Mixing-Induced CP Violation:

- Interference between direct decay and decay after mixing
- ▶ Key Measurements: ϕ_d from $B^0 \to J/\psi K^0_S$; ϕ_s from $B^0_s \to J/\psi h^+ h^-$

New Results on CP Violation in B Decays:

 \checkmark Update on the measurement of ϕ_s from $B^0_s o J/\psi \, K^+ K^-$

- $\checkmark\,$ First CP asymmetry measurement in $B^0 o J\!/\psi\,
 ho^0$
- \checkmark First CP asymmetry measurement in $B^0_s \rightarrow J/\psi \, K^0_{
 m s}$ [New]

- ∢ ⊒ →

 $(3 \text{ fb}^{-1} - \text{Full Run 1})$

CP Formalism

HFAG Convention

CP Asymmetry

$$a_{CP}(t) \equiv \frac{\Gamma(\overline{B}(t) \to f) - \Gamma(B(t) \to f)}{\Gamma(\overline{B}(t) \to f) + \Gamma(B(t) \to f)} = \frac{S_f \sin(\Delta m t) - C_f \cos(\Delta m t)}{\cosh(\Delta \Gamma t/2) + A_{\Delta \Gamma} \sinh(\Delta \Gamma t/2)}$$

• where
$$\Delta m \equiv m_{
m H} - m_{
m L}$$
 and $\Delta \Gamma \equiv \Gamma_{
m L} - \Gamma_{
m H}$

CP observables are

$$\mathcal{A}_{\Delta\Gamma} \equiv -rac{2\,\mathcal{R}\mathrm{e}[\lambda_f]}{1+|\lambda_f|^2}\,, \qquad \mathcal{C}_f \equiv rac{1-|\lambda_f|^2}{1+|\lambda_f|^2}\,, \qquad \mathcal{S}_f \equiv rac{2\,\mathcal{I}\mathrm{m}[\lambda_f]}{1+|\lambda_f|^2}$$

• in terms of $B-\overline{B}$ mixing phase ϕ

$$\lambda_f \equiv -e^{i\phi} \ rac{A(\overline{B}
ightarrow f)}{A(B
ightarrow f)} = -|\lambda_f| \ e^{i\phi^{
m eff}}$$

Effective Mixing Phase

LHCb

 $\blacktriangleright \text{ Measure } |\lambda_f| \text{ and } \phi^{\rm eff}$

$$S_f = -\eta_f rac{2|\lambda_f|\,\sin\phi^{
m eff}}{1+|\lambda_f|^2}$$

Update on measurement of ϕ_s from $B^0_s o J\!/\!\psi\,K^+\!K^-$

2

 $B_{-}^{0} \rightarrow J/\psi K^{+}K^{-}$

Mixing in the Neutral *B* Meson Systems

 $B_s^0 - \overline{B}_s^0$ mixing ϕ_s

- ► One of the CKM angles ⇒ Important test of the Standard Model
- Precise SM prediction:

J. Charles et al., [arxiv:1501.05013]

$$\phi^{\sf SM}_{s} = -0.0365 \pm 0.0013$$
 rad

Small magnitude offers excellent probe to search for New Physics

$$\phi_s = \phi_s^{\mathsf{SM}} + \phi_s^{\mathsf{NP}}$$

Experimentally accessible through CPV in:

$$B_s^0 \to J/\psi \phi, \qquad B_s^0 \to J/\psi f_0(980), \qquad B_s^0 \to D_s^+ D_s^-$$

• Extended scope: $B_s^0 \to J/\psi \, K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ Kristof De Bruyn (Nikhef)

Measurements of CP Violating Phases in B Decays

$B^0_s ightarrow J\!/\psi \, K^+ K^-$ at LHCb: Selection

PRL 114 (2015), arXiv:1411.3104

Selection:

- Analysis done in 6 bins of K^+K^- mass
- Angular analysis to disentangle CP-even and CP-odd contributions
- ▶ 3 polarisation states (f_0 , f_{\parallel} , f_{\perp}) + S-wave
- Event Yield:

 $95\:690\pm350$ signal candidates.

Time Resolution

- Using per-event resolution model
- Effective resolution: 46 fs

Flavour Tagging

- Including Opposite Side (OS) and Same Side Kaon (SSK) tagging
- Tagging power $\epsilon_{tag} D^2 = (3.73 \pm 0.15) \%$

 $B^0 \rightarrow J/\psi \rho^0$

ϕ_s from $B_s^0 \to J/\psi \, K^+ K^-$: Results

PRL 114 (2015), arXiv:1411.3104

Polarisation-Independent Fit

$$\begin{split} \phi_s^{\text{eff}} &= -0.058 \pm 0.049 \quad (\text{stat}) \pm 0.006 \quad (\text{syst}) \text{ rad} \\ |\lambda_{J/\psi \phi}| &= 0.964 \pm 0.019 \quad (\text{stat}) \pm 0.007 \quad (\text{syst}) \\ \Gamma_s &= 0.6603 \pm 0.0027 \quad (\text{stat}) \pm 0.0015 \quad (\text{syst}) \text{ ps}^{-1} \\ \Delta\Gamma_s &= 0.0805 \pm 0.0091 \quad (\text{stat}) \pm 0.0032 \quad (\text{syst}) \text{ ps}^{-1} \end{split}$$

Compatible with the SM

< 🗇 🕨

æ

 $B^0 \rightarrow J/\psi \rho^0$

World Average for $\phi_s - \Delta \Gamma_s$

HFAG, arXiv:1412.7515

First CP asymmetry measurement in $B^0 ightarrow J\!/\psi \, ho^0$

▲ □ ▶ < □ ▶ < □ ▶ < □ ▶
 Avs
 Lake Louise 2015

 $B_s^0 \rightarrow J/\psi K_S^0$

Towards (Even) Higher Precision Measurements of ϕ_s

Subleading Effects:

• A closer look at $B_s^0 \to J/\psi \phi$:

Experimentally measure an effective mixing phase

$$\phi^{\rm eff}_{s}(B^{0}_{s}
ightarrow J\!/\psi \phi) = \phi_{s} + \Delta \phi_{s}$$

- $\Delta \phi_s$ is a shift due to penguin topologies
- Controlling these higher order hadronic effects becomes mandatory!
- Relying on SU(3) flavour symmetry: constrain with $B^0 \rightarrow J/\psi \rho^0$.

See for example: De Bruyn & Fleischer, arXiv:1412.6834

$B^0 \rightarrow J/\psi \rho^0$

$B_s^0 \rightarrow J/\psi \, \kappa_{\rm S}^0$

arXiv:1411.1634

$B^0 \rightarrow J/\psi \pi^+\pi^-$ at LHCb: Selection

Selection:

- Selection based on Boosted Decision Tree trained on Simulation (Signal) and Data (Background)
- ► Event Yield: 17 650 ± 200 candidates in 20 MeV around B⁰ peak
- Angular + Dalitz analysis: identify the resonant contributions

Zhang & Stone PLB 719 (2013), arXiv:1212.6434

Resonances:

Component	Fraction [%]
$B^0 ightarrow J\!/\psi ho^0$	65.6 ± 1.9
$B^0 ightarrow J\!/\psi f_0(500)$	20.1 ± 0.7
$B^0 ightarrow J\!/\psi f_2(1270)$	7.8 ± 0.6
$B^0 ightarrow J\!/\!\psi\omega$ (782)	$0.64^{+0.19}_{-0.13}$
$B^0 ightarrow J\!/\psi ho^0(1450)$	9.0 ± 1.8
$B^0 ightarrow J\!/\psi ho^0(1700)$	3.1 ± 0.7

PRD 90 (2014), arXiv:1404.5673

Lake Louise 2015

$B^0 \rightarrow J/\psi \pi^+ \pi^-$: Polarisation-Independent Fit

Effective Mixing Phase

$$\phi_d^{\text{eff}}(B^0 \to J/\psi \,
ho^0) = (41.7 \pm 9.6 \, (\text{stat})^{+2.8}_{-6.3} \, (\text{syst}))^{\circ}$$

 $\Delta \phi_d^{\text{eff}}(\text{other modes} -
ho) = (3.6 \pm 3.6 \, (\text{stat})^{+0.9}_{-0.8} \, (\text{syst}))^{\circ}$

CP Asymmetry

$$\begin{split} \alpha_{CP}(B^0 \to J/\psi \,\rho^0) &= -(32 \pm 28 \,(\text{stat})^{+7}_{-9} \,(\text{syst})) \times 10^{-3} \\ \alpha_{CP}(\text{other modes}) &= -(1 \pm 25 \,(\text{stat})^{+7}_{-7} \,(\text{syst})) \times 10^{-3} \end{split} \qquad \qquad \alpha_{CP} \equiv \frac{1 - |\lambda|}{1 + |\lambda|}$$

CP Asymmetries for $B^0 o J\!/\psi\,
ho^0$

$$egin{aligned} & \mathcal{C}_{J/\psi\,
ho^0} = -0.063 \pm 0.056 \; (ext{stat})^{+0.019}_{-0.014} \; (ext{syst}) \ & \mathcal{S}_{J/\psi\,
ho^0} = -0.66^{+0.13}_{-0.12} \; (ext{stat})^{+0.09}_{-0.03} \; (ext{syst}) \end{aligned}$$

æ

$B^0 \rightarrow J/\psi \rho^0$

$B_s^0 \rightarrow J/\psi K_S^0$

arXiv:1411.1634

Constraining Penguin Contributions

Penguin Parameters

$$A(B^0 o J/\psi \,
ho^0) = \mathcal{N}\left[1 - a \, e^{i heta} e^{i \gamma}
ight] \,, \qquad A(B^0_s o J/\psi \, \phi) = \mathcal{N}'\left[1 + \epsilon a' \, e^{i heta'} e^{i \gamma}
ight]$$

• a and θ can be constrained using the *CP* asymmetries

• Assume no SU(3) symmetry breaking: a = a' and $\theta = \theta'$

Results

$$egin{array}{l} a' = 0.035^{+0.082}_{-0.035} \ heta' = (285^{+69}_{-95})^{\circ} \end{array}$$

Confidence Bands

- ► Dashed Line = 68% C.L.
- ► Solid Line = 95% C.L.

Constraint on Penguin Shift

 $\Delta \phi_s = (0.05 \pm 0.56)^\circ = [-1.05^\circ, +1.18^\circ]$ at 95 %C.L.

Kristof De Bruyn (Nikhef)

Measurements of CP Violating Phases in B Decays

Lake Louise 2015

First CP asymmetry measurement in $B_s^0 \rightarrow J/\psi \, K_{ m s}^0$

イロト イポト イヨト イヨト

2

$B^0_s o J\!/\psi \, K^0_{ m s}$ at LHCb: Selection

Selection:

- ▶ Selection based on artificial neural network trained entirely on data using $B^0 \rightarrow J/\psi K_S^0$ as a proxy (Signal)
- K⁰_S split into two categories:

Long K_{s}^{0} (with Velo hits) and Downstream K_{s}^{0} (without Velo hits)

▶ Event Yield: 307 \pm 20 Long $K^0_{
m S}$ and 601 \pm 30 Downstream $K^0_{
m S}$

Invariant Mass:

 $B^0 \rightarrow J/\psi \rho^0$

$B^0_s ightarrow J\!/\psi\,K^0_{ m S}$ at LHCb

LHCb-PAPER-2015-005

Fit Model

- ▶ Fully Model $B_s^0 \rightarrow J/\psi K_s^0$ and $B^0 \rightarrow J/\psi K_s^0$
- Dotted: $B^0 \rightarrow J/\psi K_{\rm S}^0$
- Dashed: $B_s^0 \rightarrow J/\psi K_s^0$
- Dash-Dotted: Combi. Bkg.

Tagging

- OS + SSK tagging
- ► Tagging power $(B_s^0 \rightarrow J/\psi K_s^0)$: $\epsilon_{tag} D^2 = (3.80 \pm 0.18) \%$
- Tagging power ($B^0 \rightarrow J/\psi K_{\rm S}^0$): $\epsilon_{\rm tag} D^2 = (2.60 \pm 0.05) \%$

▶ Difference: small SSK tagging power for $B^0 \rightarrow J/\psi_{\Box} K_S^0$

$B^0 \rightarrow J/\psi \rho^0$

$B_s^0 \rightarrow J/\psi K_S^0$

$B^0_s ightarrow J\!/\psi \, K^0_{ m s}$: Preliminary Results

LHCb-PAPER-2015-005

CP Asymmetries

$$\mathcal{A}_{\Delta\Gamma} = 0.49 \pm \frac{0.77}{0.65} (\text{stat}) \pm 0.06 (\text{syst})$$

 $\mathcal{C}_{J/\psi \ K_{\text{S}}^{0}} = -0.28 \pm 0.41 (\text{stat}) \pm 0.08 (\text{syst})$
 $\mathcal{S}_{J/\psi \ K_{\text{S}}^{0}} = -0.08 \pm 0.40 (\text{stat}) \pm 0.08 (\text{syst})$

2

Conclusion

- LHCb providing high precision measurements of $B-\overline{B}$ mixing phases ϕ_d and ϕ_s
- Controlling penguin contributions to these measurements becomes mandatory!
- ► LHCb started to measure decay channels that can be used to control them: $B^0 \rightarrow J/\psi \, \rho^0$ and $B^0_s \rightarrow J/\psi \, K^0_S$

Expect more CPV measurements soon!

э

Back-up

イロン イロン イヨン イヨン

æ

Performance of the LHCb Detector

Data Taking

LHCb Integrated Luminosity pp collisions 2010-2012

Efficiencies

- ► Trigger efficiency: Dimuon channels: ≈ 90%
- ► Track reconstruction efficiency: > 96%

LHCb Efficiency breakdown pp collisions 2010-2012

- Data taking efficiency: 93.05%
- ► Percentage of working detector channels: ≈ 99%

Resolution

Momentum resolution:

 $\Delta p/p = 0.4\%$ at $5~{
m GeV/c}$ $\Delta p/p = 0.6\%$ at 100 GeV/c

 \blacktriangleright ECAL resolution: $1\%\pm10\%$

$B_s^0 \rightarrow J/\psi \, K^+ K^-$: Polarisation-Dependent Fit

Parameter	Value
$ \lambda^0 $	$1.012\pm0.058~(ext{stat})\pm0.013~(ext{syst})$
$ \lambda^{\parallel}/\lambda^{0} $	$1.02 \ \pm 0.12 \ (ext{stat}) \pm 0.05 \ (ext{syst})$
$ \lambda^{\perp}/\lambda^{0} $	$0.97~\pm0.16~(ext{stat})\pm0.01~(ext{syst})$
$ \lambda^{ m S}/\lambda^{ m 0} $	$0.86~\pm0.12~(ext{stat})\pm0.04~(ext{syst})$
ϕ^0_s [rad]	$-0.045\pm0.053(ext{stat})\pm0.007(ext{syst})$
$\phi^{\parallel}_s - \phi^{0}_s$ [rad]	-0.018 ± 0.043 (stat) \pm 0.009 (syst)
$\phi_s^\perp - \phi_s^0$ [rad]	$-0.014\pm0.035~(ext{stat})\pm0.006~(ext{syst})$
$\phi_s^{ m S} - \phi_s^{ m 0}$ [rad]	$0.015\pm0.061~(ext{stat})\pm0.021~(ext{syst})$

Ξ

$B^0 \rightarrow J\!/\psi \, \pi^+ \pi^-$: Polarisation-Dependent Fit

Effective Mixing Phase

$$\begin{split} \phi_d^{\text{eff}}(B^0 &\to (J/\psi\,\rho)_0) &= (44.1 \pm 10.2 \; (\text{stat})^{+3.0}_{-6.9} \; (\text{syst}))^{\circ} \\ \Delta\phi_d^{\text{eff}}(\rho_{\parallel} - \rho_0) &= -(0.8 \pm 6.5 \; (\text{stat})^{+1.3}_{-1.9} \; (\text{syst}))^{\circ} \\ \Delta\phi_d^{\text{eff}}(\rho_{\perp} - \rho_0) &= -(3.6 \pm 7.2 \; (\text{stat})^{+1.4}_{-2.0} \; (\text{syst}))^{\circ} \\ \Delta\phi_d^{\text{eff}}(\text{other modes} - \rho_0) &= -(2.7 \pm 3.9 \; (\text{stat})^{+1.0}_{-0.9} \; (\text{syst}))^{\circ} \end{split}$$

CP Asymmetry

$$\begin{split} \alpha_{CP}(B^{0} \to (J/\psi\,\rho)_{0}) &= -(47 \pm 34 \,(\text{stat})^{+10}_{-11} \,(\text{syst})) \times 10^{-3} \\ \alpha_{CP}(B^{0} \to (J/\psi\,\rho)_{\parallel}) &= -(61 \pm 60 \,(\text{stat})^{+6}_{-8} \,(\text{syst})) \times 10^{-3} \\ \alpha_{CP}(B^{0} \to (J/\psi\,\rho)_{\perp}) &= (17 \pm 109 \,(\text{stat})^{+22}_{-15} \,(\text{syst})) \times 10^{-3} \\ \alpha_{CP}(\text{other modes}) &= -(6 \pm 27 \,(\text{stat})^{+14}_{-9} \,(\text{syst})) \times 10^{-3} \end{split}$$

Asymmetry Plots

æ

< □ > < 同 >