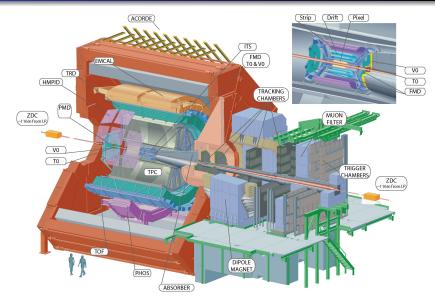
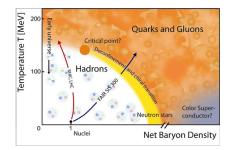
A brief review of recent results from the ALICE Collaboration


Ron Belmont Wayne State University On behalf of the ALICE Collaboration


> Lake Louise Winter Institute Lake Louise, Alberta, Canada 16 February 2014

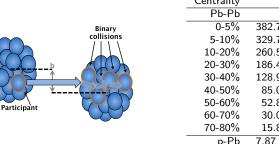
ALICE



• 37 countries, 151 institutes, 1550 members

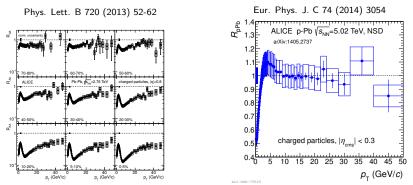
At sufficiently high temperature and/or density, the gauge coupling between quarks and gluons becomes sufficiently weak that deconfinement is achieved

Some basic information about the QGP:


- Particles produced in thermal abundances
- Hydrodynamical models describe the data very well, require fast thermalization at the parton level
- The matter is extremely hot, well in excess of the critical temperature $T_c \approx 150 \text{ MeV} (10^{12} \text{ K})$ -Stellar coronae 10^6 K -Core of white dwarf 10^7 K

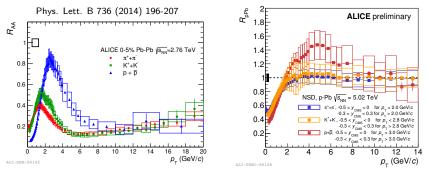
• Use geometrical (Glauber model) simulations to determine the number of participating nucleons $N_{\rm part}$ and the number of binary nucleon-nucleon collisions $N_{\rm coll}$ from detector response

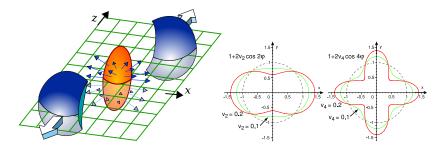
Phys. Rev. Lett. 106 (2011) 032301


Phys. Rev. C 88 (2013) 044909

Centrality	$\langle N_{part} \rangle$	$\langle N_{\rm coll} \rangle$
Pb-Pb		
0-5%	382.7 ± 5.1	1685 ± 190
5-10%	329.7 ± 4.6	1316 ± 140
10-20%	260.5 ± 4.4	921 ± 96
20-30%	186.4 ± 3.9	$556~\pm~55$
30-40%	128.9 ± 3.3	320 ± 32
40-50%	85.0 ± 2.6	171 ± 16
50-60%	52.8 ± 2.0	84.3 ± 7
60-70%	30.0 ± 1.3	37.9 ± 3
70-80%	15.8 ± 0.6	15.6 ± 1
p-Pb	7.87 ± 0.55	$\equiv N_{\rm part} - 1$
рр	≡ 2	$\equiv 1$

Nuclear modification factors

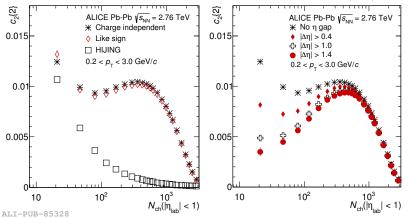

$$\begin{split} R_{AB} &= \text{Yield}_{AB} / (N_{\text{coll}}\text{Yield}_{\text{pp}}) \\ R_{AB} &< 1 \rightarrow \text{suppression of particles} \\ R_{AB} &> 1 \rightarrow \text{enhancement of particles} \\ R_{AB} &= 1 \rightarrow \text{no modification} \end{split}$$


- Significant suppression of particles in Pb-Pb at high p_T No suppression of particles in p-Pb at high p_T
- Observed suppression in Pb-Pb is not from "cold nuclear matter" measured in p-Pb—generally understood as partonic energy loss via collisional and radiative energy loss in a color-charged medium

Nuclear modification factors

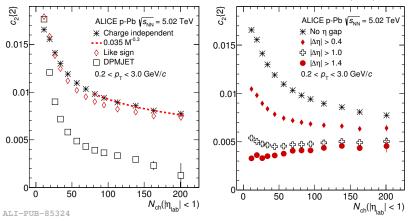
$$\begin{split} R_{\rm AB} &= {\rm Yield_{AB}}/(N_{\rm coll}{\rm Yield_{pp}}) \\ R_{\rm AB} &< 1 \rightarrow {\rm suppression \ of \ particles} \\ R_{\rm AB} &> 1 \rightarrow {\rm enhancement \ of \ particles} \\ R_{\rm AB} &= 1 \rightarrow {\rm no \ modification} \end{split}$$

- No particle species dependence at high p_T Jet "chemistry" unmodified from vacuum fragmentation (in pp collisions)
- Particle species dependent behavior at intermediate p_T in both systems—generally understood as radial flow and hadronization by parton coalescence in Pb-Pb, but what about p-Pb?

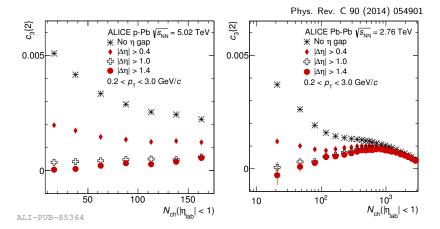


$$\frac{dN}{d\varphi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\varphi - \psi_n)) \qquad v_n = \langle \cos(n(\varphi - \psi_n)) \rangle$$

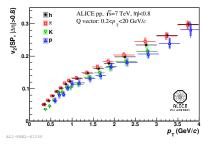
- Collisions that are not fully overlapping have almond-shape overlap region
- Pressure gradients drive outward expansion—initial state geometrical anisotropy drives final state momentum space anisotropy
- Symmetry about x-axis suggests vanishing odd-*n* terms—non zero terms indicate geometrical fluctuations


Flow and fluctuations

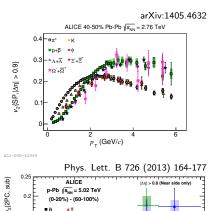
Phys. Rev. C 90 (2014) 054901



- Two particle correlations are a good probe for global correlations
- Non-flow proportiaonal to 1/N, collective behavior has no explicit N dependence
- HIJING is an A-A event generator (no flow), shows expected power law behavior
- ALICE Pb-Pb data exhibit collective behavior when non-flow is removed with large $\Delta \eta$ (large η separation between the two particles)


Phys. Rev. C 90 (2014) 054901

- DPMJET is a p-A event generator (no flow), shows expected power law behavior
- ALICE p-Pb data exhibit similar collective behavior as seen in Pb-Pb when non-flow is removed

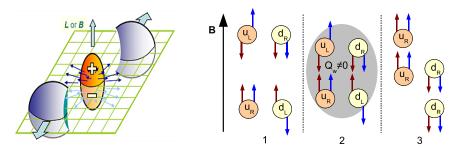


- Third harmonic results also show evidence of collective motion in both systems
- Indicative of geometrical fluctuations causing event by event triangularity in initial geometry

- Similar behavior seen in p-Pb

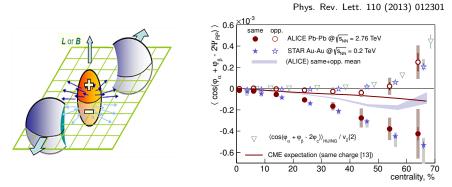
 Strong mass ordering, flip of mass ordering of pions and protons
- Very different behavior in pp -Weaker mass ordering with no flip

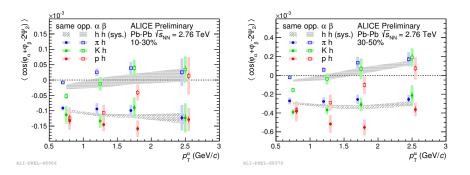
3.5


p_ (GeV/c)

0.15

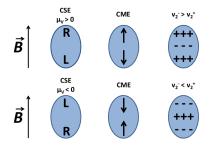
0.


0.05

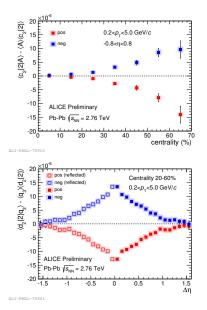

- In off-central heavy ion collisions, the spectators generate an extremely large (but short lived) magnetic field perpendicular to the reaction plane
- Presence of non-zero topological charge induces chiral imbalance

Connected to the $U(1)_A$ anomaly $\partial_\mu J^\mu_A = \frac{g^2}{32\pi^2} F^a_{\mu\nu} \tilde{F}^{\mu\nu}_a$

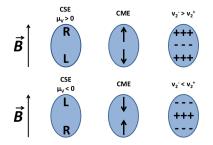
• Chiral imbalance leads to electric current when spins aligned by magnetic field $\vec{J}_V=\frac{N_ce}{2\pi^2}\mu_A\vec{B}$

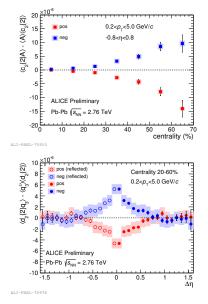


- Measurement of correlator $\langle \cos(\varphi_{\alpha}+\varphi_{\beta}-2\Psi)\rangle$ indicates charge separation along the reaction plane
- Evidence of Chiral Magnetic Effect (CME) and strong parity violation -Need to understand contributions from other sources

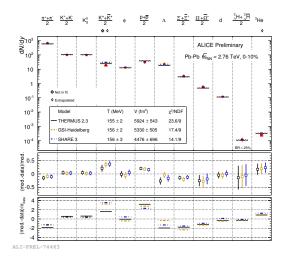


- Measurements of different species may help disentangle background sources
- Opposite sign correlator shows particle species dependence
- Input from theory needed to fully understand backgrounds and PID dependence

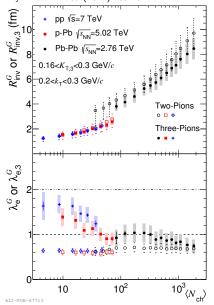

Searches for parity violation in the strong sector


- Chiral Magnetic Effect (CME) + Chiral Separation Effect (CSE) = Chiral Magnetic Wave (CMW)
- Observable: Charge dependence of elliptic flow with charge asymmetry
- ALICE data demonstrate $\Delta \eta$ dependence

Searches for parity violation in the strong sector

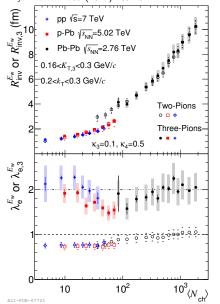

- Chiral Magnetic Effect (CME) + Chiral Separation Effect (CSE) = Chiral Magnetic Wave (CMW)
- Observable: Charge dependence of elliptic flow with charge asymmetry
- ALICE data demonstrate $\Delta\eta$ dependence
- Important to remove charge correlations

- Many, many more results to show than I have had time for here -Heavy ion physics is a rich and diverse field
 - -The field is becoming increasingly quantitative
- High p_T particles exhibit suppression in Pb-Pb but no modification in p-Pb
- Intermediate p_T particles show very interesting behavior in Pb-Pb and p-Pb
- Strong evidence of collective motion in Pb-Pb
- Similar (and surprising!) evidence of collective motion in p-Pb
- · Hadronization plays a critical role in understanding observables
- Searches for strong parity violation show intriguing results -Essential feature of QCD
 - -Very important to understand backgrounds


Additional material

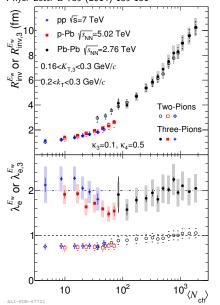
Thermal fits to ALICE data

- Thermal model assumes grand canonical ensemble
- Few parameters—T and V, μ_B fixed in this case (free at lower energies)
- Reproduces integrated yields of many different particle species over many orders of magnitude
- Sometimes ratios are used instead of yields, so V drops out and T and μ_B are the only free parameters
- Works extremely well over a very wide range of energies, from SPS to RHIC to LHC


Quantum correlations and system size

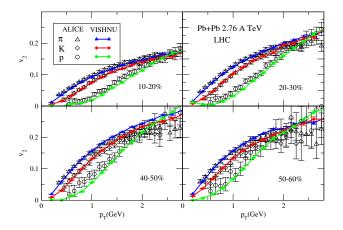
Phys. Lett. B 739 (2014) 139-151

- Quantum correlations can be used to estimate the system size R $\Delta x \Delta p \gg 2\pi \hbar$ (classical) $\Delta x \Delta p \approx 2\pi \hbar$ (quantum)
- Generally 2 indistinguishable particles are used
- ALICE the first to report 3-particle quantum correlations, which do not contain background from other kinds of 2-particle correlations

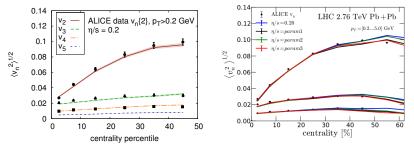

Quantum correlations and system size

Phys. Lett. B 739 (2014) 139-151

- Quantum correlations can be used to estimate the system size R $\Delta x \Delta p \gg 2\pi \hbar$ (classical) $\Delta x \Delta p \approx 2\pi \hbar$ (quantum)
- Generally 2 indistinguishable particles are used
- ALICE the first to report 3-particle quantum correlations, which do not contain background from other kinds of 2-particle correlations
- Use of non-Gaussian function to fit correlation improves quality of fit and agreement between 2- and 3-particle correlations
- Parameter λ very close to chaotic limit—incoherent emission


Quantum correlations and system size

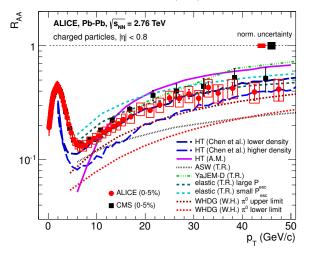
Phys. Lett. B 739 (2014) 139-151


- Quantum correlations can be used to estimate the system size R $\Delta x \Delta p \gg 2\pi \hbar$ (classical) $\Delta x \Delta p \approx 2\pi \hbar$ (quantum)
- Generally 2 indistinguishable particles are used
- ALICE the first to report 3-particle quantum correlations, which do not contain background from other kinds of 2-particle correlations
- Use of non-Gaussian function to fit correlation improves quality of fit and agreement between 2- and 3-particle correlations
- Parameter λ very close to chaotic limit—incoherent emission
- pp and p-Pb close together, Pb-Pb separate

Hydro model fits to identified particle v_2

- Song, Bass, and Heinz, Phys. Rev. C 89, 034919 (2014)
- VISHNU—Realistic 3D viscous hydro
- ALICE data (Pb-Pb at 2.76 TeV)

Estimating η/s with v_n


Gale et al, Phys. Rev. Lett. 110, 012302 (2013)

Paatalainen, QM14 Poster

• η/s reasonably well constrainted, but not with T dependence

ALICE data (Pb-Pb at 2.76 TeV)

Phys. Lett. B 720 (2013) 52-62

- ALICE and CMS data agree well
- Theoretical models get the trend right, but plenty of room for improvement