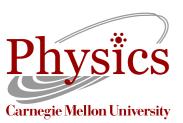
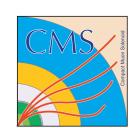


Measurements of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ cross sections at 7 TeV

Lake Louise, February 18, 2015

arXiv: <u>1501.07750</u>

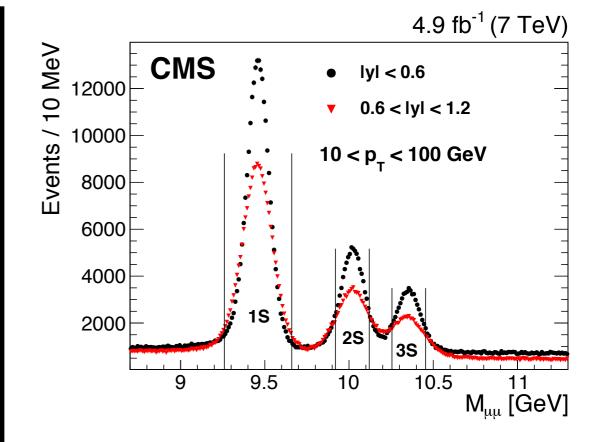

public twiki: BPH-12-006


Ben Carlson
On behalf of the CMS Collaboration

bcarlson@cern.ch

Motivation

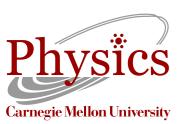
- Measurements of bb mesons (e.g. Y) are important probes of QCD
- There are several models that predict different high p_T cross section shapes
 - color singlet model, k_T-factorization, NRQCD
- Measurements of the differential cross section over a range of p_T can clarify the theoretical picture

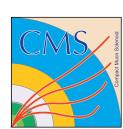


Procedure

$$\left. rac{d\sigma\left(pp
ightarrow \Upsilon(\mathrm{nS})
ight)}{dp_T}
ight|_{\Delta|y|} imes \mathcal{B}\left(\Upsilon(\mathrm{nS})
ightarrow \mu^+ \mu^-
ight) = rac{N_{\Upsilon(\mathrm{nS})}^{\mathrm{fit}}}{L_{int} \cdot \Delta p_T \cdot \mathcal{A} \cdot arepsilon}[p_T, y]$$

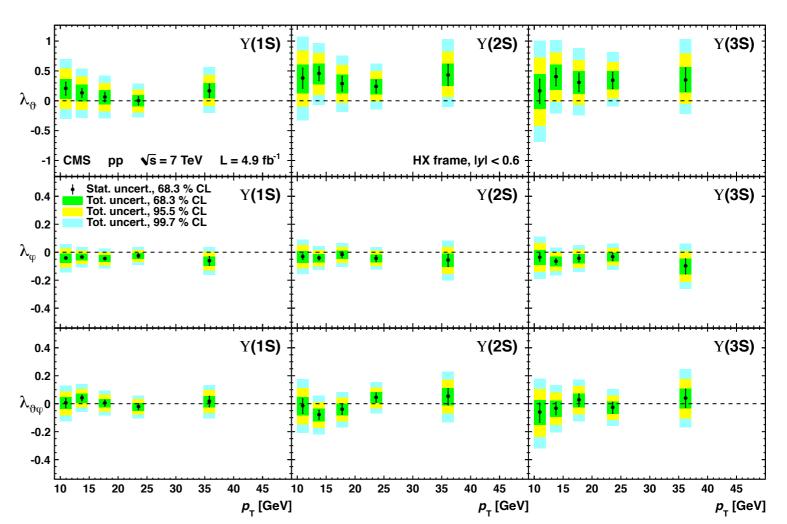
- Computed for two rapidity |y| bins
 - |y| < 0.6, 0.6 < |y| < 1.2
- L_{int}: integrated luminosity, 4.9fb⁻¹
- Δp_T : bin width
- N^{fit}: number of Y events determined from fit for each state
- ε: trigger and efficiency
- A: acceptance





Unique features of this analysis

- Utilizes 4.9 fb⁻¹ of 7 TeV for highest p_T reach yet reported
- Using measured polarization to compute the acceptance and reduces the systematic uncertainty
- Introduced a new way to compute the signal shapes from data
 - Especially useful for bins with poor mass resolution (high p_T, rapidity)
 - Allows separation of $\Upsilon(2S)$ and $\Upsilon(3S)$ states



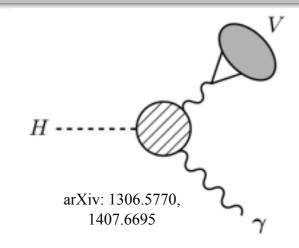
Acceptance: improved with polarization measurement

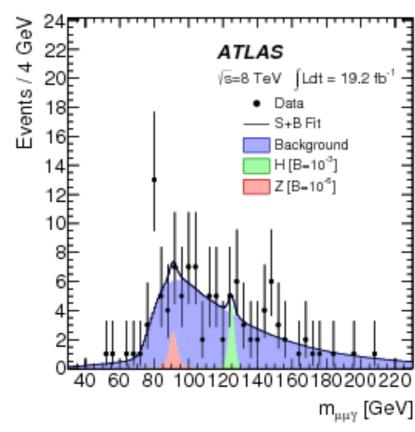
• A is the fraction of events where both muons satisfy the muon requirements:

$$p_{\rm T}(\mu) > 3\,{
m GeV} \qquad {
m for} \ 1.4 < |\eta(\mu)| < 1.6, \ p_{\rm T}(\mu) > 3.5\,{
m GeV} \qquad {
m for} \ 1.2 < |\eta(\mu)| < 1.4, \ p_{\rm T}(\mu) > 4.5\,{
m GeV} \qquad {
m for} \ |\eta(\mu)| < 1.2.$$

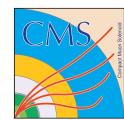
• \mathcal{A} is weighted by the angular correlation factor w, where λ_{θ} , λ_{ϕ} , $\lambda_{\theta\phi}$ are the measured of the polarization

$$w = rac{3}{4\pi} igg(rac{1}{3+\lambda_{ heta}}igg) ig(1+\lambda_{ heta}\cos^2 heta + \lambda_{\phi}\sin^2 heta\cos2\phi + \lambda_{ heta\phi}\sin2 heta\cos\phiig)$$




arXiv: 1209.2922

Long term (HL-LHC) motivation


- Measurement of $H \rightarrow J/\psi \gamma$ is the only known way to measure the Higgs coupling to c quarks
 - H \rightarrow J/ $\psi\gamma(\Upsilon\gamma)$ is a potential window to new physics
 - Branching fractions are very small, so measurement requires HL-LHC
- Need maintain capability for $J/\psi(\Upsilon)$ measurements
 - e.g. high-pt triggers for J/ψ and Υ

arXiv:1501.03276

