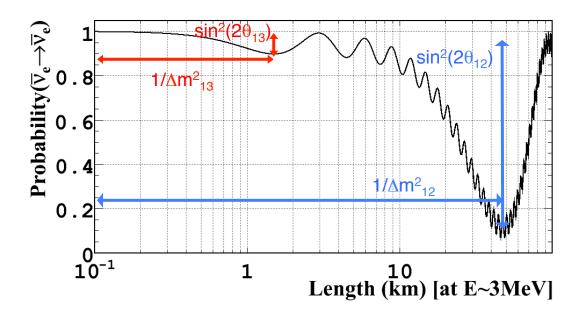
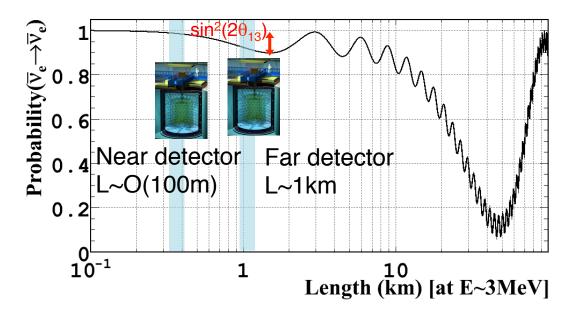
Recent Results from Double Chooz

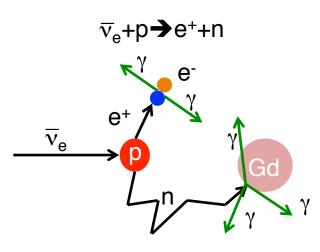

Michiru Kanda

(Tokyo Institute of Technology) On behalf of the DC collaboration

20/Feb/2015, Lake Louise Winter Institute 2015


θ₁₃ Measurement with Reactors

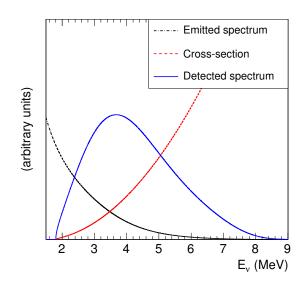
- Neutrino has still some mysteries.
- Mixing angles have been measured recently.
 - $\rightarrow \theta_{13}$ was the remaining one until a few years ago.
 - \rightarrow Precise measurement of θ_{13} is a key for neutrino problems.
- Reactor experiments are good for θ_{13} measurement by observing \bar{v}_e disappearance:
 - \rightarrow Reactor is a free and rich source of of $\bar{\nu}_e.$
 - \rightarrow At ~1km(Δ m²~0.0025) from the reactor, pure θ_{13} measurement can be achieved.

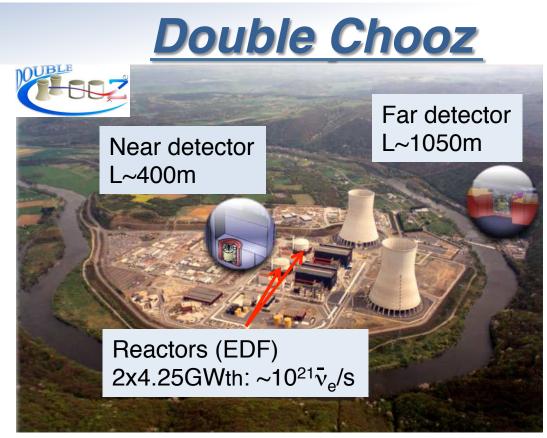

θ₁₃ Measurement with Reactors

- Neutrino has still some mysteries.
- Mixing angles have been measured recently.
 - $\rightarrow \theta_{13}$ was the remaining one until a few years ago.
 - \rightarrow Precise measurement of θ_{13} is a key for neutrino problems.
- Reactor experiments are good for θ_{13} measurement by observing \bar{v}_e disappearance:
 - \rightarrow Reactor is a free and rich source of of $\bar{\nu}_e.$
 - \rightarrow At ~1km(Δ m²~0.0025) from the reactor, pure θ_{13} measurement can be achieved.

Antineutrino Detection

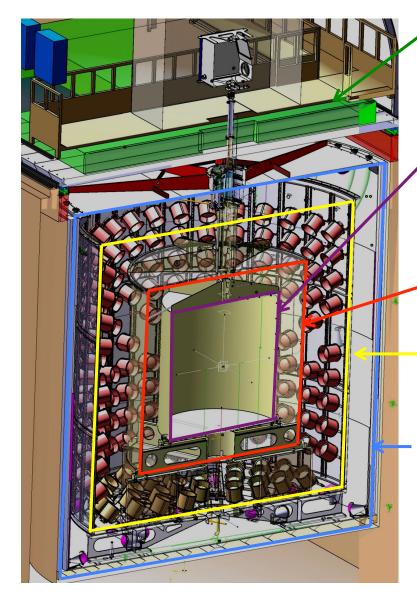
Inverse Beta Decay (IBD)


- Two different timing signals are generated at IBD event.
- Prompt signal:
 - \rightarrow e⁺ ionization and e⁺e⁻ annihilation.
 - \rightarrow 1-8 MeV.
- Delayed signal:
 - \rightarrow Neutron capture on Gd.
 - \rightarrow ~8MeV, ~30 μs delayed from prompt signal.
 - \rightarrow Signals of neutron capture on H also can be used independently.
 - $\rightarrow~\text{~}2.2 MeV$, 200 μs delay.


•Prompt signal energy (visible energy) is related to initial neutrino energy:

$$E_{vis} = E_{e^+} + 2m_e$$

$$\approx E_{\overline{v}_e} - (m_n - m_p) + m_e$$


$$\approx E_{\overline{v}_e} - 0.78 \text{MeV}$$

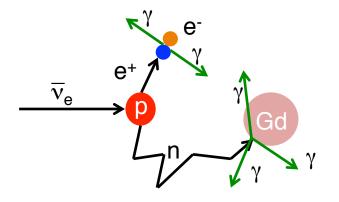
- The reactor neutrino experiment at Chooz, France.
- Collaboration:
 - \rightarrow ~150 people from 7 countries.
 - \rightarrow Brazil, France, Germany, Japan, Russia, Spain and USA.
- Far detector is running since Apr/2011.
- Near detector is just starting to take data.

The Double Chooz Detector

Outer veto (OV)

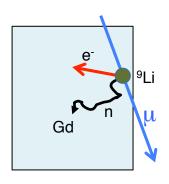
- Plastic scintillator strip.
- Identify cosmic μ .

Inner Detector

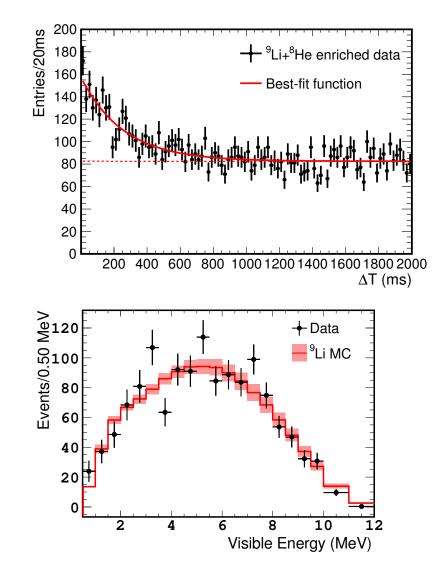

- v-target:
 - \rightarrow Gd-loaded (1 g/l) liquid scintillator (10.3m³) in acrylic vessel.
 - \rightarrow Neutrino interaction point.
- γ-catcher:
 - \rightarrow Liquid scintillator (22.3m³) in acrylic vessel.
- Buffer region:
 - \rightarrow Mineral oil (110m³) in stainless steel vessel.
 - \rightarrow 390 PMTs (10") are set in this region.

Inner veto (IV)

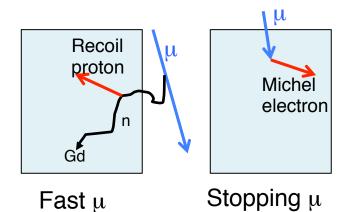
- Liquid scintillator (90m³) with 78 PMTs (8") in stainless steel vessel.
- Identify cosmic μ , reduce environmental γ

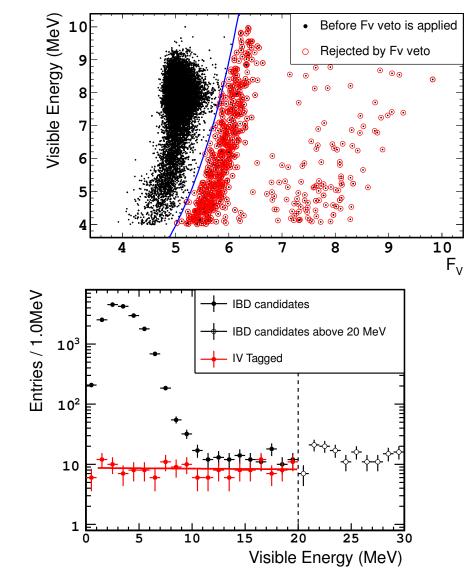

Neutrino Candidate Selection

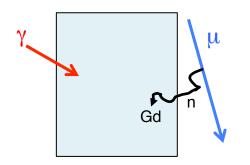
- Single event selection
 - \rightarrow Veto 1ms after μ event (high energy event).
 - \rightarrow Light noise event rejection.
- IBD selection
 - \rightarrow 0.5 < E_{prompt} < 20 MeV
 - \rightarrow 4 < E_{delayed} < 10 MeV
 - \rightarrow 0.5 < ΔT <150 μs
 - $\rightarrow \Delta R < 100 \text{ cm}$

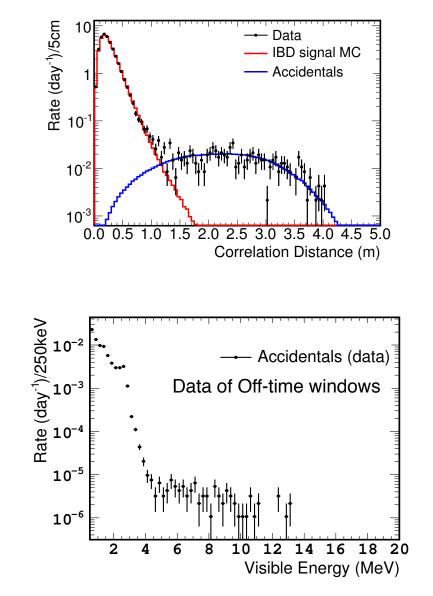


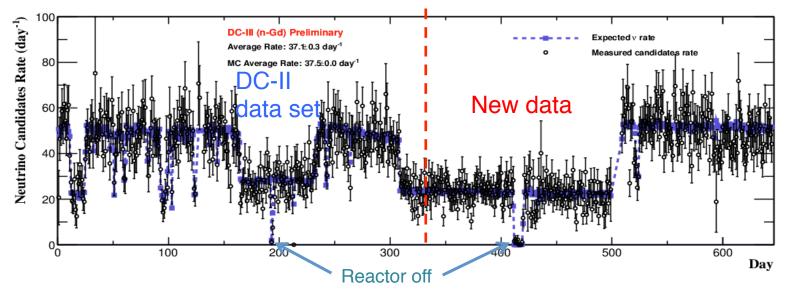
- \rightarrow No events within 200 μs before and 600 μs after prompt event
- Improvements from DC-II (PRD86(2012)052008) to DC-III(JHEP10(2014)086)
 - \rightarrow Doubled events: 227.9 live days -> 467.9 live days.
 - \rightarrow Improved energy measurement: The energy uncertainty 1.1%->0.74%.
 - \rightarrow Better background rejection (next slides).
 - \rightarrow Increased signal efficiency: S/B 15.6 -> 22.0.


Backgrounds: ⁹Li/⁸He

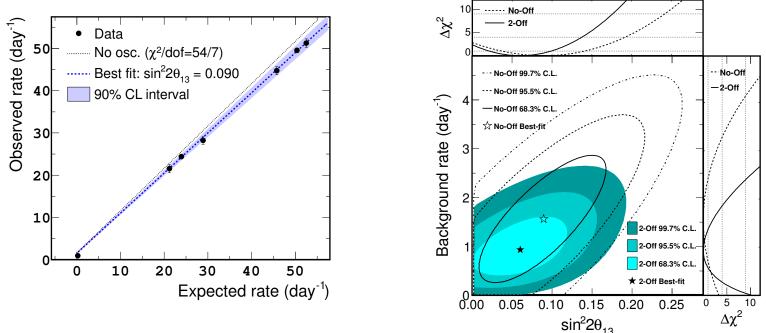

- Rejected by:
 - \rightarrow Likelihood veto (new).
- Measured by ⁹Li enriched data.
 - $\rightarrow \Delta T$ for rate.
 - \rightarrow Visible energy for shape.
- Rate: 0.97^{+0.41}-0.16 (day⁻¹)
 → DC-III/DC-II = 0.78


Backgrounds: Correlated Backgrounds


- Rejected by:
 - \rightarrow Vertex reconstruction goodness(F_v) (new).
 - \rightarrow OV cut, IV vetos.
- Measured by IV-tagged events.
- Rate: 0.604±0.051(day⁻¹)
 → DC-III/DC-II = 0.52


Backgrounds: Accidental Coincidences

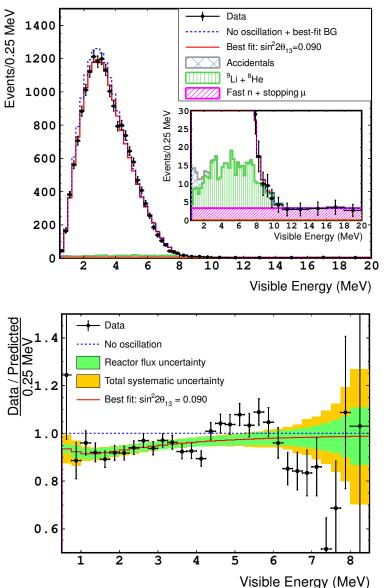
- Rejected by:
 - \rightarrow Correlation distance cut (new).
 - \rightarrow Timing cut.
- Measured by the data in off-time windows.
- Rate: 0.070±0.003 (day⁻¹)
 → DC-III/DC-II = 0.27


Data and Uncertainties

	Uncertainty(%)	DC-III/DC-II
Reactor flux	1.7	1.0
Detection efficiency	0.6	0.6
⁹ Li/ ⁸ He	+1.1/-0.4	0.5
Correlated background	0.1	0.2
Statistics	0.8	0.7
Total	+2.3/-2.0	0.8

- 460.67 live days data with reactors.
 - \rightarrow 17351 IBD candidates.
- 20% reduction of the total uncertainty.
- 7.24 live days data of reactor off.
- Δm^2 input from MNOS. $\rightarrow 2.44^{+0.09}_{-0.10} \times 10^{-3} eV^2$

Reactor Rate Modulation Analysis

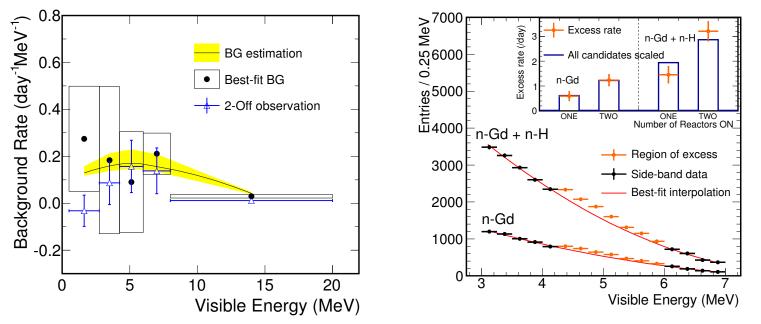


• Fit the IBD rate of different reactor power data (2-on, 1-off, 2-off)

$$R^{obs} = \left(1 - \sin^2\left(2\theta_{13}\right)\sin^2\left(\frac{\Delta m_{13}^2 L}{4E}\right)\right)R^{IBD} + B$$

- w/ background constraint with 2-off data:
 - $sin^{2}(2\theta_{13})=0.090^{+0.034}_{-0.035}$, B=1.56^{+0.18}_{-0.16} (day⁻¹)
- Background model independent fit (no constraint on B, unique of DC):
 → sin²(2θ₁₃)=0.060±0.039, B=0.93^{+0.43}-0.36 (day⁻¹)

Rate + Shape Analysis



- Compare energy spectrums of observed IBD and prediction.
- Improvements from Gd-II.
 - \rightarrow Improvement of energy reconstruction.
 - \rightarrow Data-driven background shape estimation.
 - \rightarrow Finer binning (with more statistics).
 - \rightarrow Reactor off data.
- sin²(20₁₃)=0.090^{+0.032}-0.029

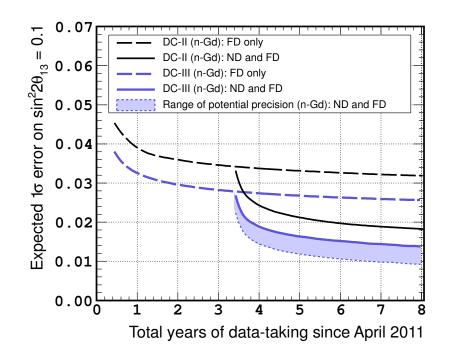
 $\rightarrow \chi^2$ /ndf = 52.2/40

- \rightarrow Background rate = 1.38±0.14 (day⁻¹)
- \rightarrow 5.3% improvement of precision from Gd-II.

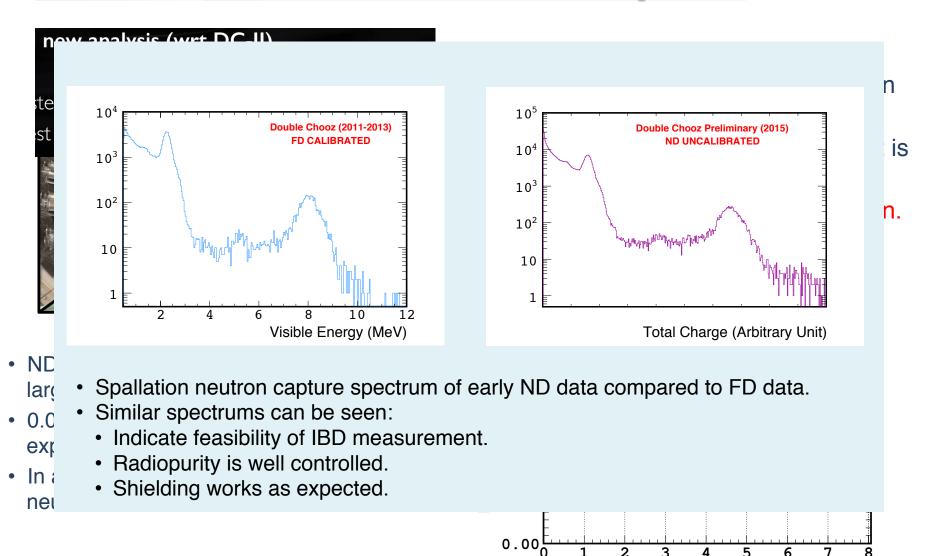
Unexpected Spectrum Distortion

- Unexpected spectrum distortion is found above 4 MeV of the prompt energy.
- Energy scale around 5 MeV is confirmed by Carbon capture events.
- No correlation with any backgrounds is found.
- Strong correlation with the reactor power is confirmed.
- The effect on θ_{13} measurement is insignificant compared to the uncertainty.

Near Detector Prospect


new analysis (wrt DC-II)

stematics dependent→ <u>statistics dominated</u> st BG model fromDC-III)



- ND flux information can suppress current largest uncertainty of the reactor flux.
- 0.01~0.015 uncertainty of sin²(2θ₁₃) is expected in 3 years.
- In addition, new analyses such sterile neutrino search can be studied.

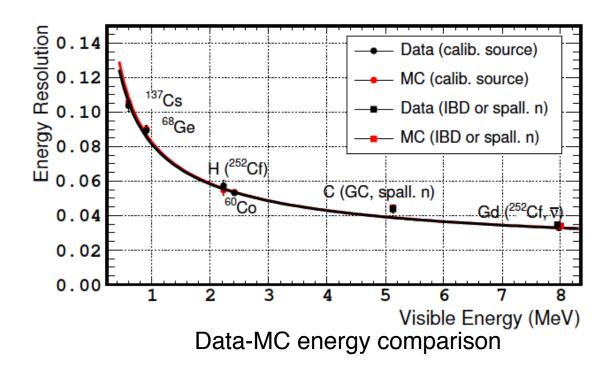
- Construction (w/o OV) was finished in the last Autumn.
- Commissioning was done and now it is starting data taking.
- New results with ND are coming soon.

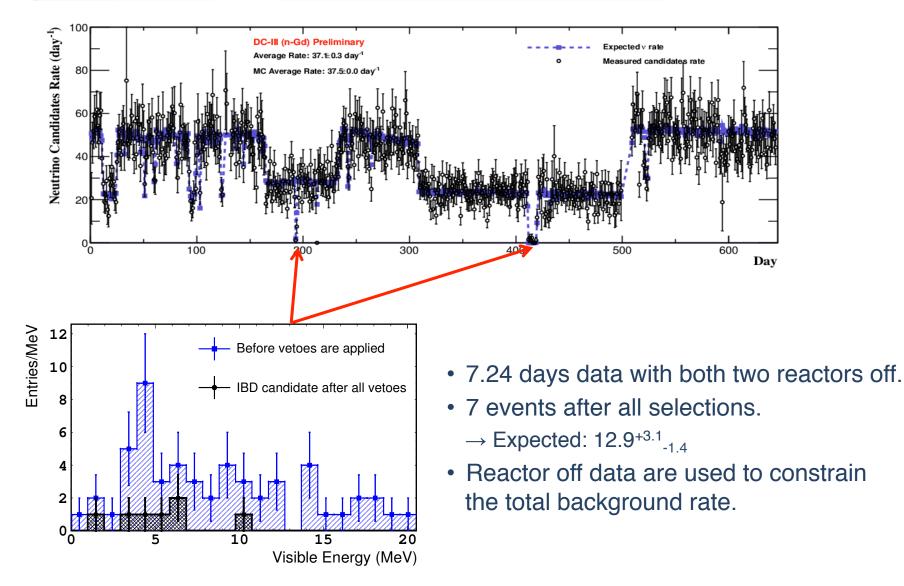
Near Detector Prospect

Δ

Total years of data-taking since April 2011

<u>Summary</u>


- Double Chooz' latest results (from JHEP 1410 (2014) 86) were shown.
 - \rightarrow New n-Gd analysis (DC-III) has a lot of improvements.
 - \rightarrow Improved energy reconstruction.
 - \rightarrow Better background rejection.
 - \rightarrow Higher signal efficiency.
 - \rightarrow Doubled statistics.
 - \rightarrow Results
 - \rightarrow Reactor Rate Modulation: $sin^2(2\theta_{13})=0.090^{+0.034}_{-0.035}$
 - \rightarrow Rate+Shape: sin²(2 θ_{13})=0.090^{+0.032}_{-0.029}
 - \rightarrow Although spectrum distortion above 4MeV is still under investigation, it has strong correlation with the reactor flux.
 - \rightarrow The Near Detector just starts data taking.
- Other recent results from Double Chooz:
 - → Ortho-positronium observation in the Double Chooz Experiment (JHEP 1410 (2014) 32)
 - → Background-independent measurement of θ_{13} in Double Chooz (Phys. Lett. B735 (2014) 51-56)
 - → First Measurement of 013 from Delayed Neutron Capture on Hydrogen in the Double Chooz Experiment (Phys. Lett. B723 (2013))


Energy calibration improvement

Systematic uncertainties on energy scale

Source	Uncertainty (%)	Gd-III/Gd-II
Non-uniformity	0.36	0.84
Instability	0.50	0.82
Non-linearity	0.35	0.41
Total	0.74	0.65

Reactor Off Data

