Search for Neutrinoless Double Beta Decay of ⁷⁶Ge in the GERDA Experiment

Andrea Kirsch — on behalf of the Gerda Collaboration —

Max-Planck Institut für Kernphysik, Heidelberg

Lake Louise Winter Institute

20st February 2015

Andrea Kirsch (MPIK)

ββ

GERDA

Search for $0\nu\beta\beta$ in GERDA

20st February 2015 1 / 18

Outline

Flavour eigenstates ν_α (with $\alpha={\rm e},\mu,\tau)$ as linear superposition of mass eigenstates ν_i

 $|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}\rangle$

Flavour eigenstates ν_{α} (with $\alpha={\rm e},\mu,\tau)$ as linear superposition of mass eigenstates ν_i

 $|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}\rangle$

$$\begin{split} \underline{P} & \text{ontecorvo-}\underline{M}aki-\underline{N}akagawa-\underline{S}akata \text{ matrix} \\ U &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}s_{23}s_{13}e^{i\delta} & -c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ \end{pmatrix} \\ & \text{where } s_{ij} = \sin \theta_{ij} \text{ and } c_{ij} = \cos \theta_{ij} \end{split}$$

What we know

- squared mass differences Δm_{12}^2 and $|\Delta m_{23}^2|$
- mixing angles θ_{12} , θ_{23} and θ_{13}

from e.g. solar neutrino + long baseline reactor, atmospheric neutrino + long baseline accelerator or short baseline reactor / accelerator experiments

Flavour eigenstates ν_α (with $\alpha={\rm e},\mu,\tau)$ as linear superposition of mass eigenstates ν_i

 $|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}\rangle$

$$\begin{split} \underline{P} & \text{ontecorvo-}\underline{M} \text{aki-}\underline{N} \text{akagawa-}\underline{S} \text{akata matrix} \\ U &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}s_{23}s_{13}e^{i\delta} & -c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ \end{pmatrix} \\ \text{where } s_{ij} = \sin \theta_{ij} \text{ and } c_{ij} = \cos \theta_{ij} \end{split}$$

What we know

- squared mass differences Δm^2_{12} and $|\Delta m^2_{23}|$
- mixing angles $heta_{12}$, $heta_{23}$ and $heta_{13}$

from e.g. solar neutrino + long baseline reactor, atmospheric neutrino + long baseline accelerator or short baseline reactor / accelerator experiments

Flavour eigenstates ν_{α} (with $\alpha = e, \mu, \tau$) as linear superposition of mass eigenstates ν_i

 $|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}\rangle$

Pontecorvo-Maki-Nakagawa-Sakata matrix $s_{13}e^{-i\delta}$ $U\!\!=\!\!\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} \\ s_{12}s_{23} - c_{12}s_{23}s_{13}e^{i\delta} & -c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} \end{pmatrix}$ $s_{23}c_{13}$ $c_{23}c_{13}$ where $s_{ij} = \sin \theta_{ij}$ and $c_{ij} = \cos \theta_{ij}$

What we know

- squared mass differences Δm_{12}^2 and $|\Delta m_{23}^2|$
- mixing angles θ_{12} , θ_{23} and θ_{13}

from e.g. solar neutrino + long baseline reactor, atmospheric neutrino + long baseline accelerator

Flavour eigenstates ν_{α} (with $\alpha={\rm e},\mu,\tau)$ as linear superposition of mass eigenstates ν_i

 $|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}\rangle$

$$\begin{split} \underline{P} & \text{ontecorvo-}\underline{M} \text{aki-}\underline{N} \text{akagawa-}\underline{S} \text{akata matrix} \\ U &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}s_{23}s_{13}e^{i\delta} & -c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ \end{pmatrix} \\ \text{where } s_{ij} = \sin \theta_{ij} \text{ and } c_{ij} = \cos \theta_{ij} \end{split}$$

What we know

- squared mass differences Δm^2_{12} and $|\Delta m^2_{23}|$
- mixing angles θ_{12} , θ_{23} and θ_{13}

from e.g. solar neutrino + long baseline reactor, atmospheric neutrino + long baseline accelerator or short baseline reactor / accelerator experiments

Unveiling the nature of the neutrino ...

Majorana: $\nu = \overline{\nu}$

VS.

Unveiling the nature of the neutrino ...

Majorana: $\nu = \overline{\nu}$

.. by Double Beta $(\beta\beta)$ decay

VS.

- rare second order nuclear transition
- occurs between 2 even-even isobars
- if single β decay energetically forbidden or ΔJ large
- 35 isotopes in nature

$\beta\beta$ emitt	3 emitters used in experiments						
48 Ca	CANDLES						
76 Ge	Gerda, Majorana						
82 Se	NEMO						
100 Mo	NEMO						
116 Cd	Cobra						
130 Te	Cuore						
^{136}Xe	Exo, KamLand-Zen						
^{150}Nd	SNO+						

Andrea Kirsch (MPIK)

Search for $0\nu\beta\beta$ in GERDA

20st February 2015 4 / 18

Double Beta ($\beta\beta$) decay

Double Beta ($\beta\beta$) decay

Double Beta ($\beta\beta$) decay

Andrea Kirsch (MPIK)

at $Q_{\beta\beta}$ -value $\rightarrow 0\nu\beta\beta$

monoenergetic peak

Search for $0\nu\beta\beta$ in GERDA

Phys. Rev. 401 C81 (2010) 032501

500

1000

(2039.061±0.007) keV

1500

2000

Neutrinoless Double Beta $(0\nu\beta\beta)$ decay

Decay rate (if light Majorana ν exchange is dominating process)

Andrea Kirsch (MPIK)

Neutrinoless Double Beta $(0\nu\beta\beta)$ decay

Decay rate (if light Majorana ν exchange is dominating process) nuclear matrix element $\underbrace{G^{0\nu}(Q_{\beta\beta},Z)}_{\text{phase space integral } \alpha \ Q_{\beta\beta}^5} \quad \overbrace{|M^{0\nu}|^2}^2 \quad \underbrace{\langle m_{\beta\beta} \rangle}_{\text{effective } \nu \text{ mass} = |\sum_{i=1}^3 U_{\text{ei}}m_i|}$ $(T_{1/2}^{0\nu})^{-1} =$ Experimental Sensitivity • ϵ = total detection efficiency Background « 1: • a =abundance of $0\nu\beta\beta$ isotope $T^{0\nu}_{1/2} \propto \epsilon \cdot a \cdot M \cdot t$ • $M \cdot t = \text{exposure} (\text{detector mass} \times \text{livetime})$ Background >> 1: • BI = background index $T_{1/2}^{0\nu} \propto \epsilon \cdot a \cdot \sqrt{\frac{M \cdot t}{B I \cdot \Delta E}}$ • $\Delta E = \text{energy resolution } \mathbf{O} \ Q_{\beta\beta}$

Neutrinoless Double Beta $(0\nu\beta\beta)$ decay

Decay rate (if light Majorana ν exchange is dominating process) nuclear matrix element $\underbrace{G^{0\nu}(Q_{\beta\beta},Z)}_{\text{phase space integral } \alpha \ Q_{\beta\beta}^5} \underbrace{|M^{0\nu}|^2}_{\text{effective } \nu \text{ mass}} = |\sum_{i=1}^3 U_{\text{ei}}m_i|$ $(T_{1/2}^{0\nu})^{-1} =$ Experimental Sensitivity • ϵ = total detection efficiency Background « 1: • a =abundance of $0\nu\beta\beta$ isotope $T_{1/2}^{0\nu} \propto \epsilon \cdot a \cdot M \cdot t$ • $M \cdot t = \text{exposure} (\text{detector mass} \times \text{livetime})$ Background >> 1: • BI = background index $T_{1/2}^{0\nu} \propto \epsilon \cdot a \cdot \sqrt{\frac{M \cdot t}{B I \cdot \Delta E}}$ • $\Delta E = \text{energy resolution } \mathbf{O} \ Q_{\beta\beta}$

Search in ⁷⁶Ge (using well established semiconductor technology)

Advantages	Disadvantages
 source = detector → high ε High Purity Ge → low intrinsic BI FWHM @ Q_{ββ} ~0.2% → excellent ΔE test of 0νββ observation by parts of HDM without depending on NME 	 low Q_{ββ}-value → possible external BI from e.g. ²⁰⁸Tl + small G^{0ν}(Q_{ββ}, Z) a=7.8% for ⁷⁶Ge → enrichment needed rather long and costly process to get large active detector mass

GER manium Detector Array Eur. J. Phys. C73 (2013) 2330

- located @ LNGS underground laboratory, Italy (3400 m w.e.→ cosmic µ flux reduced by 10⁶)
- surrounding rock shielded by tank with ultrapure water, the copper lined cryostat and LAr
- plastic scintillators above cryostat neck and water instrumented with PMTs as active $\mu\text{-veto}$
- detectors are operated bare in LAr as coolant

Andrea Kirsch (MPIK)

GER manium Detector Array Eur. J. Phys. C73 (2013) 2330

- located @ LNGS underground laboratory, Italy $(3400 \text{ m w.e.} \rightarrow \text{cosmic } \mu \text{ flux reduced by } 10^6)$
- surrounding rock shielded by tank with ultrapure water, the copper lined cryostat and LAr
- plastic scintillators above cryostat neck and water instrumented with PMTs as active $\mu\text{-veto}$
- detectors are operated bare in LAr as coolant

1	
	•

٥	minimal amount of (screened)
	material close to the detectors

component/	40 K	226 Rn	$^{228}{ m Th}$	
det. support	$[\mu Bq]$	$[\mu Bq]$	$[\mu Bq]$	
copper (80g)	$<\!7.0$	< 1.3	$<\!\!1.5$	
PTFE (10g)	6.0	0.25	0.31	
Banana (125g)	$1.5 \cdot 10^{\circ}$	7 _	-	
				-

Andrea Kirsch (MPIK)

GERDA Timetable

Experiment proceeds in two phases:

Phase	Mass	BI	Exposure	$T_{1/2}^{0 u}$ (90% C.L.)	Status
Phase	[kg]	$\left[\frac{\mathrm{cts}}{\mathrm{kg}\cdot\mathrm{keV}\cdot\mathrm{yr}} ight]$	$[kg \cdot yr]$	[yr]	Status
T	15	10^{-2}	20	${\sim}2\cdot10^{25}$	finished
П	35	10^{-3}	100	$12\cdot 10^{26}$	in prep.

GERDA Timetable

Experiment proceeds in two phases:

Phase	Mass	BI	Exposure	$T^{0 u}_{1/2}(90\%~{ m C.L.})$	Status
Fliase	[kg]	$\left[\frac{\mathrm{cts}}{\mathrm{kg}\cdot\mathrm{keV}\cdot\mathrm{yr}} ight]$	$[\mathrm{kg}\cdot\mathrm{yr}]$	[yr]	Status
I	15	10^{-2}	20	${\sim}2\cdot10^{25}$	finished
Ш	35	10^{-3}	100	$12\cdot 10^{26}$	in prep.

Semi-coaxial

- inherited from HDM (ANG1-5) and IGEX (RG1-3) experiments; all reprocessed at Canberra
- enrichment fraction of $^{76}\mathrm{Ge}\sim\!86\%$

Broad Energy Germanium (BEGe)

- ~ 30 newly processed detectors
- enrichment fraction of $^{76}\text{Ge} \sim 88\%$

Phase I data taking

- Nov 2011 May 2013: 8x
- 2 detectors not considered due to high leakage current
- total mass = 14.6 kg
- July 2012 May 2013: 5x
- 1 detector not considered due to unstable behaviour
- total mass = 3.0 kg
- testing Phase II concept

Andrea Kirsch (MPIK)

Search for $0\nu\beta\beta$ in GERDA

 20^{st} February 2015 8 / 18

Physics spectrum

- β -spectrum of ³⁹Ar
- $2\nu\beta\beta$ -spectrum of 76 Ge
- γ-lines of ⁴⁰K, ⁴²K, ⁶⁰Co, ²¹⁴Bi, ²¹²Bi and ²⁰⁸TI
- α-spectrum of ²³⁸U chain (in semi-coaxial detectors)
- *BI* before PSD @ $Q_{\beta\beta}$ for "golden" data-set = $0.018 \pm 0.002 \frac{\text{cts}}{(\text{kg·keV·yr})}$

Physics spectrum

- β -spectrum of ³⁹Ar
- $2\nu\beta\beta$ -spectrum of 76 Ge
- γ-lines of ⁴⁰K, ⁴²K, ⁶⁰Co, ²¹⁴Bi. ²¹²Bi and ²⁰⁸TI
- α -spectrum of ²³⁸U chain (in semi-coaxial detectors)
- BI before PSD @ $Q_{\beta\beta}$ for ۰ "golden" data-set = $0.018 \pm 0.002 \frac{\text{cts}}{(\text{kg·keV·vr})}$

Andrea Kirsch (MPIK)

9 / 18

Background reduction by off-line analysis

Background reduction by off-line analysis

- quality cuts; E monitored by weekly calibration with movable $^{228}{\rm Th}$ source: ${\sim}9\%$ rejected @ $Q_{\beta\beta}$
- anti-coincidence muon/2nd Ge-diode: $\sim 20\%$ rejected @ $Q_{\beta\beta}$
- PSD based on location(s) of energy deposition inside the active volume: ~~50% rejected @ $Q_{\beta\beta}$

Pulse shape: BEGe

Ramo-Shockley theorem

- Charge Q(t)= $-q \times [\phi(\mathbf{r}_{h}(t)) - \phi(\mathbf{r}_{e}(t))]$
- Current I(t) = dQ(t)/dt= $q \times [\mathcal{E}(\mathbf{r}_{h}(t)) \cdot \mathbf{v}_{h}(t) - \mathcal{E}(\mathbf{r}_{e}(t)) \cdot \mathbf{v}_{e}(t)]$
- → mostly holes (but hardly any electrons) do contribute to the signal formation!

Signal-like single-site event (SSE) $A \propto E$

PSD parameter A/E

A =amplitude of current pulse

E = energy

- high capability of distinguising SSE from MSE and surface p⁺ or n⁺ events
- tuned using double escape peak (DEP) of 208 Tl (where per definition A/E=1), compton continuum and $2\nu\beta\beta$ events
- keep events with 0.965 < A/E < 1.07
- 0νββ-signal acceptance = (92 ± 2)% background acceptance @ Q_{ββ}≤20%
- well tested and documented method!

JINST 4 (2009) P10007 JINST 6 (2011) P03005 Eur. Phys. J. C73 (2013) 2583

Andrea Kirsch (MPIK)

Search for 0
uetaetaeta in GERDA

Pulse shape: semi-coaxial vs. BEGe

Andrea Kirsch (MPIK)

PSD method ANN Eur. Phys. J. C73 (2013) 2583

ANN = artificial neural network

- input variables: time when charge pulse reaches 1%, 3%, ..., 99% of maximum amplitude ($n_{\rm var}{=}50$)
- TMVA (TMIpANN algorithm) with 2 hidden layers of n_{var} and n_{var}+1 nodes
- training using ²²⁸Th calibration data
 → SSE: ²⁰⁸TI DEP @ 1620.7 keV
 → MSE: ²¹²Bi FEP @ 1592.5 keV
- cut defined such that the acceptance of ²⁰⁸TI DEP is fixed to 90%
- 0νββ-signal acceptance = (90 ⁺ ⁵/₉)% background acceptance @ Q_{ββ}~55%
- further cross checked by: $2\nu\beta\beta$ -event acceptance = $(85 \pm 2)\%$ SSE part of compton edge = (85 - 94)% 60 Co calibration DEPs = (83 - 95)%two other independent PSD methods

Andrea Kirsch (MPIK)

Search for $0\nu\beta\beta$ in GERDA

Unblinding @ $Q_{\beta\beta} \pm 5 \text{ keV}$ Phys. Rev. Let. 111 (2013) 122503

Unblinding @ $Q_{\beta\beta} \pm 5 \text{ keV}$ Phys. Rev. Let. 111 (2013) 122503

data set	PSD	Exposure [kg·yr]	FWHM @ $Q_{\beta\beta}$ [keV]	Efficiency $a \cdot \epsilon$	Events @ ROI	$N_{\rm exp}$	$N_{\rm obs}$	no peak observed
golden	w/o w/	17.9	$4.8{\pm}0.2$	$0.688 \\ 0.619$	76 45	$\frac{3.3}{2.0}$	$\frac{5}{2}$	@ Q_{etaeta}
silver	w/o	1.3	4.8 ± 0.2	0.688	19	0.8	1	\rightarrow GERDA
BEGe	w/o w/	2.4	3.2 ± 0.2	0.720	23	1.0 0.1	1 1 0	on $0\nu\beta\beta$

Andrea Kirsch (MPIK)

Unblinding @ $Q_{\beta\beta} \pm 5 \text{ keV}_{Phys. Rev. Let. 111 (2013) 122503}$

$$T_{1/2}^{0\nu} = \frac{\ln(2) \cdot N_{\rm A}}{m_{\rm A} \cdot N^{0\nu}} \cdot M \cdot t \cdot \overbrace{f_{76} \cdot f_{\rm av}}^{\rm abundance \ a} \underbrace{\varepsilon_{\rm fep} \cdot \varepsilon_{\rm psd}}_{\rm efficiency \ \epsilon}$$

- frequentist approach: profile likelihood fit in [1930-2190] keV interval with 4 free parameters:
 - $3 \times$ constant bkgd (different data sets)
 - $1 \times$ gauss with common $T_{1/2}^{0\nu} > 0$

(systematic uncertainties on a, ϵ, μ, σ)

$$\rightarrow$$
 best fit $N^{0\nu} = 0$

 $\rightarrow T_{1/2}^{0\nu}(90\%$ C.L.) > 2.1 · 10²⁵ yr

 \rightarrow median sensitivity: $2.4 \cdot 10^{25}$ yr

- Bayesian approach: flat prior for $1/T_{1/2}^{0\nu}$ in $[0;10^{-24}]\,{\rm yr}^{-1}$
- \rightarrow best fit $N^{0\nu}=0$
- $\rightarrow T_{1/2}^{0\nu}(90\%$ C.L.) > 1.9 · 10²⁵ yr
- \rightarrow median sensitivity: 2.0 \cdot 10²⁵ yr

2.4

 3.2 ± 0.2

w/o

w/

BEGe

0.663

Comparison with other $0\nu\beta\beta$ experiments

[1] Eur. Phys. J. A12 (2001) 147-154

- [2] Phys. Rev. D 65 (2002) 092007
- [3] Phys. Lett. B 586 (2004) 198-212
- [4] Phys. Rev. Let. 111 (2013) 122503

[5] Nature 510 (2014) 229-234

- [6] Phys. Rev. Lett. 110 (2013) 062502
- [7] Astropart. Phys. 34 (2011) 822-831
- [8] Phys. Rev. D 89 (2014) 111101

Andrea Kirsch (MPIK)

Search for $0\nu\beta\beta$ in GERDA

Comparison with other $0\nu\beta\beta$ experiments

Isotope	e Experiment	$\frac{T_{1/2}^{0\nu}(90\% \text{ C.L.})}{[10^{25} \text{yr}]}$	Ref.
	HdM	> 1.9	[1]
76 Ge	Igex	> 1.6	[2]
	parts of HdM	$= 1.19^{+0.37}_{-0.23}$	[3]
	Gerda	> 2.1	[4]
136 20	Exo	> 1.1	[5]
ve	$Kam\mathrm{LAND}\text{-}Zer$	> 1.9	[6]
130 Te	Cuoricino	> 0.28	[7]
¹⁰⁰ Mo	Nemo-3	> 1.1	[8]

hypothesis test:

H0: background only

- H1: GERDA sees signal from claim in Ref.[3]; add. 5.9 ± 1.4 signal cts in $Q_{\beta\beta} \pm 2\sigma_{\rm E}$
- \rightarrow profile likelihood: p($N^{0\nu}=0|H1$)=0.01
- \rightarrow Bayes factor: p(H1) / p(H0) = 0.024
- \rightarrow search for $0\nu\beta\beta$ -signal "open" again!
- [1] Eur. Phys. J. A12 (2001) 147-154
- [2] Phys. Rev. D 65 (2002) 092007
- [3] Phys. Lett. B 586 (2004) 198-212
- [4] Phys. Rev. Let. 111 (2013) 122503

• total exposure: $M \cdot t = 21.6 \text{ kg} \cdot \text{yr}$

[5] Nature 510 (2014) 229-234

- [6] Phys. Rev. Lett. 110 (2013) 062502
- [7] Astropart. Phys. 34 (2011) 822-831
- [8] Phys. Rev. D 89 (2014) 111101

Andrea Kirsch (MPIK)

Search for 0
uetaetaeta in GERDA

Different strategies in parallel needed to push sensitivity

- Phase I: 20 kg·yr with BI of $\sim 10^{-2}$ cts/(kg·keV·yr)
- Phase II: 100 kg·yr with BI of $\sim 10^{-3}$ cts/(kg·keV·yr)

Different strategies in parallel needed to push sensitivity

- Phase I: 20 kg·yr with BI of $\sim 10^{-2} \text{ cts}/(\text{kg·keV·yr})$
- Phase II: 100 kg·yr with BI of $\sim 10^{-3}$ cts/(kg·keV·yr)

avoid close-by background sources:

- use cleaner signal and HV cables
- reduce material for holders
- special care in crystal production

Different strategies in parallel needed to push sensitivity

- Phase I: 20 kg·yr with BI of $\sim 10^{-2} \text{ cts/(kg·keV·yr)}$
- Phase II: 100 kg·yr with BI of $\sim 10^{-3}$ cts/(kg·keV·yr)

avoid close-by background sources:

- use cleaner signal and HV cables
- reduce material for holders
- special care in crystal production

increase mass:

30 additional BEGe detectors (~20 kg)

Different strategies in parallel needed to push sensitivity

- Phase I: 20 kg·yr with BI of $\sim 10^{-2} \text{ cts/(kg·keV·yr)}$
- Phase II: 100 kg·yr with BI of $\sim 10^{-3}$ cts/(kg·keV·yr)

avoid close-by background sources:

- use cleaner signal and HV cables
- reduce material for holders
- special care in crystal production
- increase mass:
 30 additional BEGe detectors (~20 kg)
- 3 reject residual background radiation by:
 - optimized Pulse Shape Analysis
 - LAr scintillation light veto

Different strategies in parallel needed to push sensitivity

- Phase I: 20 kg·yr with BI of $\sim 10^{-2} \text{ cts/(kg·keV·yr)}$
- Phase II: 100 kg·yr with BI of $\sim 10^{-3}$ cts/(kg·keV·yr)

avoid close-by background sources:

- use cleaner signal and HV cables
- reduce material for holders
- special care in crystal production

increase mass:

30 additional BEGe detectors (${\sim}20~{\rm kg})$

3 reject residual background radiation by:

- optimized Pulse Shape Analysis
- LAr scintillation light veto

γ

Different strategies in parallel needed to push sensitivity

- Phase I: 20 kg·yr with BI of $\sim 10^{-2} \text{ cts/(kg·keV·yr)}$
- Phase II: 100 kg·yr with BI of $\sim 10^{-3}$ cts/(kg·keV·yr)

avoid close-by background sources:

- use cleaner signal and HV cables
- reduce material for holders
- special care in crystal production

increase mass: 30 additional BEGe detectors (~20 kg)

Ireject residual background radiation by:

- optimized Pulse Shape Analysis
- LAr scintillation light veto
- expected Phase II sensitivity $\simeq 1.4 \cdot 10^{26} \text{ yr} (90\% \text{ C.L.});$ factor 7 better than Phase I
- first data from pilot string taken these days!

γ

Conclusion: Phase I (2011 - 2013)

- $\bullet\,$ data taking completed with an exposure of $21.6~{\rm kg\cdot yr}$
- blind analysis performed (for the first time in this field)
- unprecedented BI of $1 \cdot 10^{-2} \text{ cts}/(\text{kg·keV·yr})$ after PSD
- half-life of 0νββ:

 $T_{1/2}^{0
u}(90\%\,{
m C.L.}){>}2.1{\cdot}10^{25}\,{
m yr}$ (GERDA alone)

- $T_{1/2}^{0\nu}(90\%\,{\rm C.L.}){>}3.0{\cdot}10^{25}\,{\rm yr}\,\left({\rm Gerda+HdM}{\scriptscriptstyle [1]+\rm IGex}{\scriptscriptstyle [2]}\right)$
- effective neutrino mass: $\langle m_{\beta\beta} \rangle = (0.2 0.4) \, eV$
- many additional results like e.g. 2νββ half-life or limits on 0νββ/2νββ decays to excited states, 0νββχ, etc...)

Euro Phys J A12 (2001) 147
 Phys Rev D65 (2002) 092007

Outlook: Phase II (upcoming)

- new BEGe detectors of additional $\sim 20 \text{ kg} \rightarrow \text{available}$
- upgrade of infrastructure (lock system, glove box, ...) → finished
- liquid argon scintillation veto
- last integration tests (new contacting, electronics, ...) → ongoing

 \rightarrow installed

The Collaboration

Andrea Kirsch (MPIK)

Search for $0\nu\beta\beta$ in GERDA

The Collaboration

... and the people behind the experiment.

Picture taken during last GERDA Meeting in June 2014 hosted by the Max-Planck-Institut für Kernphysik @ Heidelberg, Germany

GERDA in fast motion

Calibration, time stability and energy resolution

- (bi-) weekly calibration with movable 228 Th sources
- offline energy reconstruction (semi-Gaussian filter)
- also to check resolution and gain stability over time

• short term drifts monitored with test pulser (0.05 Hz)

Andrea Kirsch (MPIK)

Calibration, time stability and energy resolution

• shift of 208 TI FEP position @ 2614.5 keV relative to previous calibration

- drifts small compared to FWHM @ $Q_{\beta\beta} \sim 0.2\%$
- peak within 0.3 keV at correct position (from 42 K peak)

Calibration, time stability and energy resolution

• energy resolution @ $Q_{\beta\beta}$

- FWHM from physics runs ~4% larger than expected from calibration data
 exposure weighted FWHM @ Q_{ββ} is:
 - (4.8 \pm 0.2) keV for semi-coaxial (3.2 \pm 0.2) keV for BEGe

Phase detector properties & run times

detectors	t [days]	M[kg]	f_{76} [%]	f_{AV} [%]
	enr	iched coa	axial detector	rs
ANG2 ANG3 ANG4 ANG5 RG1 PC2	$\begin{array}{r} 485.5 \\ 485.5 \\ 485.5 \\ 485.5 \\ 485.5 \\ 485.5 \\ 284.8 \end{array}$	$\begin{array}{c} 2.833 \\ 2.391 \\ 2.372 \\ 2.746 \\ 2.110 \\ 2.166 \end{array}$	$86.6 \pm 2.5 \\ 88.3 \pm 2.6 \\ 86.3 \pm 1.3 \\ 85.6 \pm 1.3 \\ 85.5 \pm 1.5 \\ 85.$	$87.1 \pm 4.3 \pm 2.8$ $86.6 \pm 4.9 \pm 2.8$ $90.1 \pm 4.9 \pm 2.9$ $83.1 \pm 4.0 \pm 2.7$ $90.4 \pm 5.2 \pm 2.9$ $82.1 \pm 4.6 \pm 2.7$
	enr	riched Bl	EGe detector	s
GD32B GD32C GD32D GD35B	$\begin{array}{c} 280.0 \\ 304.6 \\ 282.7 \\ 301.2 \end{array}$	$\begin{array}{c} 0.717 \\ 0.743 \\ 0.723 \\ 0.812 \end{array}$	$\begin{array}{c} 87.7 \pm 1.3 \\ 87.7 \pm 1.3 \\ 87.7 \pm 1.3 \\ 87.7 \pm 1.3 \\ 87.7 \pm 1.3 \end{array}$	$\begin{array}{c} 89.0 \pm 2.7 \\ 91.1 \pm 3.0 \\ 92.3 \pm 2.6 \\ 91.4 \pm 2.9 \end{array}$

Detector assembly

Overview of data taking and publications

duty cycle

- (bi-) weekly calibration with $^{228}\mathrm{Th}\ \mathrm{source} \to \mathrm{spikes}$
- in between: Phase I physics measurements
- flat parts: BEGe insertion & maintenance
- total livetime = 492.3 days

Overview of data taking and publications

background model

- Run 25-43 = exposure of 18.5 kg⋅yr
 → 15.4 kg⋅yr for "golden"
 - $\rightarrow 1.3 \text{ kg} \cdot \text{yr}$ for "silver"
 - $\rightarrow 1.8~{\rm kg}{\cdot}{\rm yr}$ for "BEGe"

Eur. Phys. J. C74 (2014) 2764

0 uetaeta analysis

- Run $25-46 = exposure of 21.6 \text{ kg} \cdot \text{yr}$
 - $\rightarrow 17.2 \; \rm kg\cdot yr$ for "golden"
 - $\rightarrow 1.3 \; \rm kg \cdot yr$ for "silver"
 - $\rightarrow 2.4~{\rm kg}{\cdot}{\rm yr}$ for "BEGe"

Phys. Rev. Let. 111 (2013) 122503

$2\nu\beta\beta$ and $0\nu\beta\beta\chi$ analysis

- Run 25-46 = exposure of 20.3 kg·yr
 → 17.2 kg·yr for "golden"
 - $\rightarrow 2.4 \text{ kg·yr for "BEGe"}$

submitted to Eur. Phys. J. C (arXiv:1501.02345)

duty cycle

- (bi-) weekly calibration with 228 Th source \rightarrow spikes
- in between: Phase I physics measurements
- flat parts: BEGe insertion & maintenance
- total livetime = 492.3 days

Andrea Kirsch (MPIK)

Search for $0\nu\beta\beta$ in GERDA

General procedure

- simulation of known (material screening) and observed background sources
- spectral fit with combination of all components in [570-7500] keV on the 3 data-sets
- 2 extremes: "minimum" (all known + visible contributions) & "maximum" (additional contributions from other possible locations)

General procedure

- simulation of known (material screening) and observed background sources
- spectral fit with combination of all components in [570-7500] keV on the 3 data-sets
- 2 extremes: "minimum" (all known + visible contributions) & "maximum" (additional contributions from other possible locations)

General procedure

- simulation of known (material screening) and observed background sources
- spectral fit with combination of all components in [570-7500] keV on the 3 data-sets
- 2 extremes: "minimum" (all known + visible contributions) & "maximum" (additional contributions from other possible locations)

Bi:

2000

General procedure

- simulation of known (material screening) and observed background sources
- spectral fit with combination of all components in [570-7500] keV on the 3 data-sets
- 2 extremes: "minimum" (all known + visible contributions) & "maximum" (additional contributions from other possible locations)

Results

- no γ -line expected around $Q_{\beta\beta}$
- flat background for ROI excluding known peaks @ 2103 keV (²⁰⁸TI), 2119 keV (²¹⁴Bi)

• "golden":
$$BI = 1.75^{+0.26}_{-0.24} \cdot 10^{-2} \frac{\text{cts}}{\text{kg} \cdot \text{keV} \cdot \text{yr}}$$

"BEGe":
$$BI = 3.6^{+1.3}_{-1.0} \cdot 10^{-2} \frac{\text{cts}}{\text{kg·keV·yr}}$$

General procedure

- simulation of known (material screening) and observed background sources
- spectral fit with combination of all components in [570-7500] keV on the 3 data-sets
- 2 extremes: "minimum" (all known + visible contributions) & "maximum" (additional contributions from other possible locations)

Results

- no γ -line expected around Q_{etaeta}
- flat background for ROI excluding known peaks @ 2103 keV (²⁰⁸TI), 2119 keV (²¹⁴Bi)

• "golden":
$$BI = 1.75^{+0.26}_{-0.24} \cdot 10^{-2} \frac{\text{cts}}{\text{kg·keV·yr}}$$

"BEGe": $BI = 3.6^{+1.3}_{-1.0} \cdot 10^{-2} \frac{\text{cts}}{\text{kg·keV·yr}}$

Background model: "coax" vs. "BEGe"

Andrea Kirsch (MPIK)

1000

800

600

Search for $0\nu\beta\beta$ in GERDA

2000

2500

1600

energy (keV)

1400

 20^{st} February 2015 29 / 18

3500

energy (keV)

3000

Background model: "minimum" vs. "maximum" @ $Q_{\beta\beta}$

Andrea Kirsch (MPIK)

$T_{1/2}^{2 u}$ measurement of $^{76}{ m Ge}$ submitted to Eur. Phys. J. C (arXiv:1501.02345)

- "golden" data-set: 17.9 kg·yr exposure used to evaluate half-life of $2\nu\beta\beta$ decay
- fit range: (570-7500) keV
- binned maximum likelihood approach
- minimum background model
- 2νββ half-life important for understanding of 0νββ (e.g. nuclear matrix element)

Final result:

$$T_{1/2}^{2\nu} = 1.926 \pm 0.095 \cdot 10^{21} \text{ yr}$$

(unprecedented precision)

Andrea Kirsch (MPIK)

$0 uetaeta\chi$ search in $^{76}{ m Ge}$ submitted to Eur. Phys. J. C (arXiv:1501.02345)

- search for Majoron accompanied $0\nu\beta\beta$ decay
- "golden" + "BEGe" data-set with 20.3 kg·yr total exposure

Model	n	Mode	Goldstone	L	$T_{1/2}^{0\nu\chi}$
IB	1	v	poson	0	
IC	1	x	yes	ő	> 4.2
ID	3	$\chi\chi$	no	0	> 0.8
IE	3	$\chi\chi$	yes	0	> 0.8
IF	2	χ	bulk field	0	> 1.8
IIB	1	χ	no	-2	> 4.2
IIC	3	χ	yes	-2	> 0.8
IID	3	$\chi\chi$	no	-1	> 0.8
IIE	7	$\chi\chi$	yes	-1	> 0.3
IIF	3	χ	gauge boson	-2	> 0.8

Most stringent limits for ⁷⁶Ge:

- n=1, 3 improved by factor 6
- n=7 improved by factor 5
- n=2 reported for first time

Andrea Kirsch (MPIK)

Search for 0
uetaeta in GERDA

20st February 2015 32 / 18

Why GERDA does not use HDM result from 2006 ?!

a) 2004 publications: NIM A522 371 & PL B586 198

entire data set: 71.7 kg·yr (active mass) 28.75 ± 6.86 signal events $T_{1/2}^{0v} = (1.19_{-0.23}^{+0.37}) \cdot 10^{25} \text{ yr}$

data for PSD analysis: 51.4 kg·yr 19.58 ± 5.41 signal events $T_{1/2}^{0v} = (1.25_{-0.27}^{+0.49}) \cdot 10^{25} \text{ yr}$

> with PSD applied: 12.36 ± 3.72 events DEP survival fraction ~ 62% $\rightarrow T_{1/2}^{0v} = 1.23 \cdot 10^{25} \text{ yr}$

Without efficiency correction: $T_{1/2}^{0v} = 1.98 \cdot 10^{25} \, \text{yr}$

No efficiency correction is applied in any publication!

Andrea Kirsch (MPIK)

Why GERDA does not use $\mathrm{H}\mathrm{D}\mathrm{M}$ result from 2006 ?!

b) 2006 publication: Mod Phys Lett A21 p. 1547-1566

error on signal count not correct since smaller than Poisson error

efficiency factor not considered \rightarrow calculation of $T_{1/2}^{0\nu}$ not correct \rightarrow GERDA does not use this result

Search for $0\nu\beta\beta$ in GERDA

20st February 2015