

Searches for new low-mass states at BABAR

 $\Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow c\overline{c}$ (To be submitted to PRD-RC) $e^+e^- \rightarrow \tau^+\tau^- \pi^0$ (Phys. Rev. D 90, 112011)

> 2015 Lake Louise Winter Institute Lake Louise, February 15 – 21 2015

Alexandre Beaulieu for the BABAR Collaboration

The BABAR experiment

- Located at PEP-II asymmetric e⁺e⁻ collider at the SLAC National Accelerator Laboratory
- Collected data from 1999 to 2008
- B-factory: optimized for B physics
- General-purpose detector is also excellent to study τ and c physics, and dark sector searches

Context and motivation

Light Higgs produced in $\Upsilon(nS)$ (n = 1, 2, 3) radiative decays

► A light CP-odd Higgs boson A⁰ is expected in a number of extensions of the Standard Model, such as non-minimal supersymmetry Phys. Rep. 496:1 (2010):

 $A^0 = \cos \theta_A A_{MSSM} + \sin \theta_A A_S$

- Couplings of A^0 to fermions are a function of $\cos \theta_A$ and parameter $\tan \beta$ $\tan\beta = \nu_u/\nu_d$
 - To up-type fermion pair: $\sim m_f \cos \theta_A / \tan \beta$
 - To down-type fermion pair: $\sim m_f \cos \theta_A \tan \beta$
- Searches for an A⁰ lighter than two bottom guarks are possible at B Factories from processes:

- Couplings are proportional to mass:
 - $\tau^+\tau^-$ decays dominate for large (~ 20) tan β
 - $c\overline{c}$ decays dominate for small (~ 1) tan β
- BABAR already provided limits on a variety of final states:
 - μ⁺μ⁻ Phys. Rev. Lett. **103**, 081803, Phys. Rev. D **87**, 031102(R)
 - ► $\tau^+\tau^-$ Phys. Rev. Lett. **103**, 181801, Phys. Rev. D **88**, 071102(R)
 - invisible Phys. Rev. Lett. 107, 021804 (2011)
 - inclusive hadronic Phys. Rev. Lett. 107, 221803 (2011)
 - gq and ss Phys. Rev. D 88, 031701(R)

 $v_{(u,d)}$: v.e.v. of Higgs field

Overview of the analysis

Today we present a new result for

$$\mathcal{B}\left(\boldsymbol{\Upsilon}(1S) \rightarrow \boldsymbol{\gamma}\boldsymbol{A}^0\right) \cdot \mathcal{B}\left(\boldsymbol{A}^0 \rightarrow \boldsymbol{c}\overline{\boldsymbol{c}}\right)$$

- ► Study of the decay $\Upsilon(2S) \rightarrow \pi^+\pi^- \Upsilon(1S)$ $\downarrow_{\gamma} A^0$ $\downarrow_{c\overline{c}}$
- ▶ Search for events with a $\pi^+\pi^-$ pair, a γ , and a *D* meson
- Reconstruct D meson in five final states:

 $D^{0} \to K^{-} \pi^{+}, D^{+} \to K^{-} \pi^{+} \pi^{+}, D^{0} \to K^{-} \pi^{+} \pi^{+} \pi^{-}, D^{0} \to K^{0}_{s} \pi^{+} \pi^{-}, D^{*+} \to D^{0} \pi^{+} \downarrow_{K^{-} \pi^{+}} \pi^{0}$

- Select signal using boosted decision trees (BDT)
- ► Search for A^0 in $m_{\chi}^2 = (P_{e^+e^-} - P_{\pi^+\pi^-} - P_{\gamma})^2$, $m_X \in [4.00, 9.25] \text{ GeV}/c^2$

Data sample and event selection

- Data sample:
 - ▶ 13.6 fb⁻¹ on $\Upsilon(2S)$ resonance:

 - $(98.3 \pm 0.9) \times 10^6 \Upsilon(2S)$ mesons $(17.5 \pm 0.3) \times 10^6 \ \ \pi^+\pi^- \Upsilon(1S)$ decays
 - ▶ 1.4 fb⁻¹ sample 30 MeV below $\Upsilon(2S)$ to study backgrounds
 - Signal MC for different A⁰ masses
- Event selection:
 - Split mass spectrum in two regions:
 - Dominating background is different
 - Low mass $m_{A^0} \in [4.00, 8.00] \text{ GeV}/c^2$
 - ▶ High mass $m_{A^0} \in [7.50, 9.25] \text{ GeV}/c^2$

- Train 10 BDTs (2 regions, 5 D channels) using 24 variables
- ▶ 9.8×10^3 (low-mass) and 7.4×10^6 (high-mass) candidates pass all selection. 5/13

Signal yield extraction

- Extended binned maximum likelihood fits (float N_{sig} and N_{bkg})
- Signal m PDF modeled as Crystal Ball Function
 - Shape parameters (function of m_{A^0}) given by signal MC:

- Background m PDF: 2nd order polynomial
- Fitting domain: A^0 mass hypothesis ±10 Gaussian σ
- Scan in 10 (2) MeV/ c^2 steps in the low (high) region
 - Keep the highest significance
- Calculate 90% Bayesian upper limits (UL) assuming uniform prior
 - Combine 2 mass regions where their upper limits meet

Signal yield extraction

- Extended binned maximum likelihood fits (float N_{sig} and N_{bkg})
- Signal m PDF modeled as Crystal Ball Function
 - Shape parameters (function of m_{A^0}) given by signal MC:

- Background m PDF: 2nd order polynomial
- Fitting domain: A^0 mass hypothesis ±10 Gaussian σ
- Scan in 10 (2) MeV/ c^2 steps in the low (high) region
 - Keep the highest significance
- Calculate 90% Bayesian upper limits (UL) assuming uniform prior
 - Combine 2 mass regions where their upper limits meet

$$\frac{\int_{0}^{UL} \exp\left(-\frac{(x-n_{sig})^2}{2\Delta n_{sig}^2}\right) dx}{\int_{0}^{\infty} \exp\left(-\frac{(x-n_{sig})^2}{2\Delta n_{sig}^2}\right) dx} = 0.9$$

Results

To be published in PRD-RC

No significant signal observed

100 andidates / 0.05 GeV/c² 80 40 3.5 4.5 m (GeV/c²) Cand 200 0^{8.2} 8.4 8.5 8.6 m (GeV/c²)

for $m_{A^0} \in [4.00, 9.25] \text{ GeV}/c^2$. This excludes [8.95, 9.10] GeV/ c^2 due to peaking background from $\chi_{bJ}(1P)$ transitions.

Search for new scalars near m_{π^0}

Motivation: BABAR pion-photon transition form-factor data

► $Q^2 > 15 \text{ GeV}^2$ is well beyond the non-perturbative QCD regime \rightarrow should approach the Brodsky-Lepage limit: $\sqrt{2}f_{\pi}/Q^2 \simeq 185 \text{ MeV}/Q^2$.

"No sign of convergence towards perturbative QCD asymptotics is seen in the BABAR data for the $\pi^{0"1}$

¹D. McKeen, M. Pospelov and J.M. Roney, Phys. Rev. D **85**, 053002 (2012)

Potential for new states or particles

- Possibility of exotic scalars¹ coupling to the τ lepton (other couplings constrained by theory or other experiments).
- ► Candidates could be scalar (ϕ_S), pseudo-scalar (ϕ_P), or hardcore-pion (π_{HC}^0 , a $\phi_P \pi^0$ mixing).
- "Pion impostors": $m_{\phi} \sim m_{\pi^0} \pm 10 \text{ MeV}/c^2$, decay to $\gamma \gamma$
- Production in e⁺e⁻ annihilations:

+ charge conjugation

• Lowest production cross sections¹ (at 95% CL) for $Q^2 > 8 \text{ GeV}^2$:

 $\sigma_{\pi^0_{
m HC}}=$ 0.25 pb, $\sigma_{\phi_{P}}=$ 2.5 pb, and $\sigma_{\phi_{S}}=$ 68 pb.

• Assuming these σ , 120×10^3 , 1.2×10^6 , or 32×10^6 were *produced* in the $\Upsilon(4S)$ data set!

¹Phys. Rev. D **85**, 053002 (2012)

Data sample and signal selection

- Use $\Upsilon(4S)$ sample: $\mathcal{L}_{int} = 468 \, \text{fb}^{-1}$ ($\approx 430 \times 10^6 \tau$ pairs)
- Simulation of signal and generic backgrounds (e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $B\overline{B}$, $q\overline{q}$ (q = u, d, s, c)).

Signal selection: $e^+e^- \rightarrow \tau^+\tau^-$ " π^0 " where " π^0 " is not from τ decay

- ► Select $\tau^+\tau^- \rightarrow e^{\pm}\mu^{\mp}\nu_e\nu_\mu$
- Require $p_{\perp} > 0.3 \,\text{GeV}/c$
- Require one π^0 : $\gamma\gamma$
 - $\sum E_{\gamma}(\text{non}-\pi^0) < 300 \,\text{MeV}$
 - $30^\circ \le \theta(e, \gamma) \le 150^\circ$
- ► Require $E_{\pi^0} \in [2.2, 4.7]$ GeV
- Reduce background from $\tau^+\tau^- \rightarrow \nu_\tau \nu_\ell \ell^{\pm} + \pi^{\mp} \pi^0 \nu_\tau$
 - $E_{small} + E_{\pi^0} > E_{CM}/2$
 - $m_{\pi^0\pi^{\pm}} > m_{\tau}$ for π^{\pm} mis-ID'd as μ^{\pm}

E_{small}: smaller of track energies

Data sample and signal selection

- Use $\Upsilon(4S)$ sample: $\mathcal{L}_{int} = 468 \, \text{fb}^{-1}$ ($\approx 430 \times 10^6 \, \tau$ pairs)
- Simulation of signal and generic backgrounds (e^+e^- , $\mu^+\mu^-$, $\tau^+\tau^-$, $B\overline{B}$, $q\overline{q}$ (q = u, d, s, c)).

Signal selection: $e^+e^- \rightarrow \tau^+\tau^-$ " π^0 " where " π^0 " is not from τ decay

- Require $p_{\perp} > 0.3 \,\text{GeV}/c$
- Require one π^0 : $\gamma\gamma$
 - $\sum E_{\gamma}(\text{non}-\pi^0) < 300 \,\text{MeV}$
 - $30^\circ \le \theta(e, \gamma) \le 150^\circ$
- ► Require $E_{\pi^0} \in [2.2, 4.7]$ GeV
- Reduce background from $\tau^+\tau^- \rightarrow \nu_\tau \nu_\ell \ell^\pm + \pi^\mp \pi^0 \nu_\tau$
 - $E_{small} + E_{\pi^0} > E_{CM}/2$
 - $m_{\pi^0\pi^\pm} > m_{\tau}$ for π^\pm mis-ID'd as μ^\pm

E_{small}: smaller of track energies

events with $m_{\gamma\gamma} \in [100, 160] \text{ MeV/}c^2$

Fit $m_{\gamma\gamma}$ with linear background model + Gaussian peak $n(m_{\gamma\gamma}) = N_{lin} (1 + a_1 m_{\gamma\gamma}) + N_p G(\mu_p, \sigma_p)$ for $m_{\gamma\gamma} \in [50, 300] \text{ MeV/c}^2$

- Extended unbinned max log (L) fit
- Fit for a_1 , N_p and N_{lin}
- Get σ_p from control sample studies
- ► Scan mass hypotheses µ_p between 110 and 160 MeV/c²
- Report highest yield in range
- Correct for peaking background: $N_p^{bkg} = 1.24 \pm 0.37$
- ► Correct for fit bias -0.06 ± 0.02 events

Signal MC is used to get efficiency: $\varepsilon_{\phi_P} = \varepsilon_{\pi_{HC}^0} = (0.455 \pm 0.019)\%; \quad \varepsilon_{\phi_S} = (0.0896 \pm 0.004)\%$

Final result

Extended likelihood fits and mass scan

Corresponding limit on cross sections [theory 95% C.I.]:

 $\sigma \leq \begin{cases} 73 \, \text{fb for } \pi_{\text{HC}}^{0} & [250 \, \text{fb} - 840 \, \text{fb}] \text{ and } \phi_{P} & [2.5 \, \text{pb} - 6.9 \, \text{pb}] \\ 370 \, \text{fb for } \phi_{S} & [68 \, \text{pb} - 185 \, \text{pb}] \end{cases}$

Summary

Light Higgs decays to $c\overline{c}$:

- ► Highest local significances 2.3σ (2.0 σ) for the low (high) mass region
- p-values of 54% and 80% respectively (with trial factors)
- ▶ Upper limits on $\mathcal{B}(\Upsilon(1S) \to \gamma A^0) \cdot \mathcal{B}(A^0 \to c\overline{c})$:
 - ► 7.4 × 10⁻⁵ to 2.4 × 10⁻³

Exotic scalars near π^0 mass:

▶ $5.0 \pm 2.7 \pm 0.4$ candidates found in data at 137 MeV/ c^2

 $\sigma_{e^+e^- \to \tau^+\tau^-\phi} \leq \begin{cases} 73 \, \text{fb} & \text{for the } P \text{ models} \\ 370 \, \text{fb} & \text{for the } S \text{ model} \end{cases}$

► Minimal cross sections to explain $F_{\pi^0}(Q^2)$ excess are 250 fb, 2,500 fb or 68,000 fb (> 3.4 σ discrepancy)

Additional Material

The BABAR Detector

Branching fractions for different NMSSM parameters:

Dermíšek, Gunion & McElrath, Phys. Rev. D 76, 051105(R)

Cross section for $e^+e^- \rightarrow (e)e\pi^0$

Taken from Phys. Rev. D 86, 092007 (2012)

13/13

Why au?²

- Has to be SM (otherwise m > 100 GeV/c² to escape collider pair production bounds; unrealistically large coupling)
- ► Coupling to light q: would have to be greater that $\pi^0 u, d, s$ couplings \rightarrow unrealistic
- ► Coupling to *c*: constrained by $\mathcal{B}(\psi' \rightarrow \gamma \pi^0) \sim 1.6 \times 10^{-6}$
- ► Coupling to *b*: constrained by $\mathcal{B}(\Upsilon(2S) \rightarrow \Upsilon 1S\pi^0) < 1.8 \times 10^{-4}$
- ► Coupling to *e*: constrained by $\mathcal{B}(\pi^0 \rightarrow \gamma \gamma) \sim 0.99$
- Coupling to μ : constrained $(g-2)_{\mu}$ to ~ $10^{-3} 10^{-4}$

Coupling to the τ is the most likely scenario!

²See D. McKeen, M. Pospelov and J.M. Roney, Phys. Rev. D **85**, 053002 (2012)

Backgrounds and pseudo-experiments

Study of background:

- Combinatorial background from fit
- Peaking background evaluation
 - ► From BABAR $e^+e^- \rightarrow \tau^+\tau^-$ simulation: 0.38 ± 0.09
 - ► But $\gamma\gamma$ physics not simulated: data-driven estimate for $e^+e^- \rightarrow e^+e^- \pi^+\pi^- \pi^0$: 0.86 ± 0.36
 - Peaking events total: $N_p^{bkg} = 1.24 \pm 0.37$
- Study fit bias:
 - Repeat study adding 0 25 events
 - Correct for the average fit error (bias): -0.06 ± 0.02 events

Background-only distribution

Signal efficiency calculations

- ► Generate $e^+e^- \rightarrow \tau^+\tau^- \pi^0$; 3-body decay phase space model
- Re-weight according to matrix element of actual process
- Fit using signal + linear background model

 $\epsilon_P = (0.455 \pm 0.019)\%$ $\epsilon_S = (0.0896 \pm 0.004)\%$

	$arepsilon_{\phi_P,\pi_{ m HC}^0}$	εφς
Nominal value	0.455%	0.0896%
Relative uncertainties		
MC statistics	3.5%	3.7%
π^0 efficiency	1.0%	1.1%
Particle identification	0.5%	0.5%
Momentum scale	0.2%	0.2%
Momentum resolution	0.1%	<0.1%
Energy scale	2.0%	2.0%
Energy resolution	0.6%	0.6%
Combined uncertainty	4.2%	4.4%

Tab.: Summary of the contributions to $\sigma(\varepsilon_x)$.

Control sample studies

for peak shape parameters

- Allow π^0 from τ decays
 - Remove $E_{small} + E_{\pi^0}$ requirement
 - Reverse mass requirement: $m_{\pi^0 \pi^{\pm}} \leq m_{\tau}$
- Require $E_{\pi^0} > 3 \text{ GeV}$ in the CM frame
- Fit peak + linear background model
- Average shape parameters

 $\mu_m = 134.5 \, \text{MeV/}c^2$ $\sigma_m = 11.1 \, \text{MeV/}c^2$