# News from the Axion Dark Matter experiment (ADMX)

Dmitry Lyapustin
Lake Louise Winter Institute
February 18, 2015

### Overview

- Theory behind ADMX
- Experimental setup
- Recent results



- Theory behind ADMX
- Experimental setup
- Recent results



# Axion theory

- The Axion Dark Matter experiment (ADMX) looks for axions
- Axions are hypothetical particles that solve the Strong CP Problem and account for dark matter
- An axion can decay into two photons
- $\tau_{a \to \gamma \gamma} \approx 10^{40} \ yr$



# RF cavity technique

- ADMX uses a strong magnetic field to induce  $a \rightarrow \gamma \gamma$
- Interaction is enhanced in resonant cavity when  $m_a c^2 \approx h f_{cavity}$
- $f_{cavity}$  is tuneable
- Scan speed  $\propto \frac{1}{T_{system}^2}$





#### Colder is better

- ADMX was upgraded to use a dilution refrigerator
- Cavity and amplifier physical temperatures will drop to 100 mK
- 2014 data was collected at ~1.5 K (as were previous runs)



#### Two channels are better than one

- ADMX sensitive to  $TM_{0n0}$  modes
- TM<sub>010</sub> has best coupling to axions
- For 2014 data was collected from both  $TM_{010}$  and  $TM_{020}$  modes





- Theory behind ADMX
- Experimental setup
- Recent results























### Insertion and extraction





- Theory behind ADMX
- Experimental setup
- Recent results



#### Receiver chain

- Two channels
- SQUID in 1<sup>st</sup> channel,
   HEMTs in both channel
- 1K noise temperature in 1<sup>st</sup> channel, 4 K noise temperature in 2<sup>nd</sup> channel
- 10.7 MHz intermediate mixing frequency is used in both channels



### 1.0 – 1.5 GHz exclusion limits



#### Final words

- New exclusion limits were set from less sensitive  $TM_{020}$  cavity mode
- $T_{system} = T_{physical} + T_{amplifier} \approx 6 K$
- With dilution refrigerator,  $T_{system} \approx 200 \ mK$
- Stay tuned for mK results from ADMX!

# Extra slides

## ADMX site



### Previous results



# Adding spectra

- Spectra are offset in frequency
- Axion signal adds coherently while noise adds incoherently
- SNR improves as  $\sqrt{N_{spectra}}$



### Thermal noise 1



### Thermal noise 2

