IceCube-Gen2

Upgrading IceCube to higher and lower energies

IceCube Physics

Sources of high-energy cosmic rays, new astronomical window, probe low-mass WIMP DM, neutrino oscillations

DAMA no channeling (2008)

Simple (2011)

IceCube-Gen2 Infrastructure

A "next generation IceCube" detector

PINGU ("Precision IceCube Next Generation Upgrade")

- Scale: 40 strings, extending DeepCore
- Physics goals: neutrino mass ordering, neutrino physics, dark matter

High-Energy In-Ice Component

- Scale: O(100) strings, O(10km³)
- Physics goals: identify astrophysical sources of neutrinos and cosmic rays, neutrino and particle physics, BSM
- Surface component like IceTop

A large surface extension for vetoing downgoing bkg

- Several km larger than the detector
- Optimal size and density under investigation

PINGU Low-Energy Extension

PINGU would lower neutrino energy threshold to a few GeV

Baseline geometry:

- Add 40 new strings interleaved with existing DeepCore strings
- 60 (updated) DOMs on each string
 - also evaluate impact of more DOMs/string
- Use technology very similar to that used with IceCube (drill, digital optical module, ...)
- Would take 2-3 seasons to deploy
- Could be taking data as early as 2020

Atmospheric Neutrino Signal

number of events expected in PINGU/year

	triggers detector	pass baseline analysis
v _e CC	52k	26k
νμ СС	86k	35k
ντ СС	6.4k	2.7k
v _x NC	17k	7.9k

PINGU Event Reconstruction

For baseline geometry (40 strings, 60 DOMs/string)

+ "particle ID" (track vs. cascade)

Neutrino Mass Ordering (Hierarchy)

Main goal of PINGU - in addition to better sensitivity to oscillations, WIMPS, ...

- mass ordering is an unknown parameter in the neutrino sector
- can be determined as neutrinos pass through matter
 - ν oscillation probability is enhanced if ordering is <u>normal</u>
 - $ightharpoonup \overline{\nu}$ oscillation probability is enhanced if ordering is inverted

Estimated Sensitivity

Significance including all systematics and basic particle ID

- ▶ 1.8σ in first year of data (first octant)
- Reach 3σ in roughly 3.5 years
 - (does not include livetime from partially built detector)

PINGU livetime [yrs

The Neutrino Mass Ordering Landscape

Several current or planned experiments will have sensitivity to the neutrino mass ordering in the next 10-15 years

- Width indicate main uncertainties
- PINGU timeline based on aggressive but feasible schedule

after Blennow et al., arXiv:131.1822

note: median outcome shown - large fluctuations possible

Astrophysical Neutrinos

Best-fit spectral index between 60TeV and 2PeV (per flavour) is about E^{-2.3±0.3} - looks more complicated below 60TeV

Neutrino and Muon Fluxes

Signal region begins to dominate above ~80TeV - detector should be efficient above ~30TeV

String Density

How well would we reconstruct events with fewer strings?

- Analyzed the event with only a subset of the lceCube strings (20 strings, spacing 250m)
- Result:
 - angular resolution: 30°
 - energy resolution: 10%
- We can work with fewer strings!

String Density

Similar story for high-energy tracks - we don't need as many "layers" of strings to observe this one

i, 12 Nov 2010 13:14:20 UTC = 14385 ns

Deploy More Strings!

Baseline idea: extend from IceCube

- "Strawman" detector shown here:
 - ▶ 120 strings in addition to IceCube
 - average spacing of 240m
 - \rightarrow volume: $\sim 10 \text{ km}^3$
 - ▶ string length: ~1.3km

Geometries - Strawman Designs

All upgrades also include PINGU low-energy strings (not shown)—these use the current IceCube technology (1x large PMT modules)

IceCube

top area (+60m border): 0.9km²
volume: 1.2 km³
strings: IC86
spacing: ~125m

"Sunflower" 240m

top area (+60m border): km² volume: 9.7 km³ strings: IC86+120 spacing: ~240m

"Sunflower" 300m

top area (+60m border): km² volume: 14.2 km³ strings: IC86+120 spacing: ~300m

Geometries - Strawman Designs

Increase in volume and projected area - However: the sparser the array the more you (potentially) lose in track quality!

Geometries - Even More Ideas

Or maybe these? We are still optimizing for the best design!

Two Clusters

"Bunny Ears"?

or something totally different?

"Wall of Strings"?

Sensitivities

We need to optimize the detector to be sensitive to all three neutrino flavours!

- "starting events" scale with detector volume low backgrounds
 - electron neutrinos
 - tau neutrinos
 - starting tracks
 - neutral current
- "incoming tracks" scale with detector area and pointing (for distant sources w/o extension)

tau neutrino double-bang rate

Sensitivities - Example: Glashow Events

Larger volumes provide rates higher by an order of magnitude!

Φ_{ν_e}	interaction	pp so	urce	
$[\text{GeV}^{-1}\text{cm}^{-2}\text{s}^{-1}\text{sr}^{-1}]$	type	IC-86	$240 \mathrm{m}$	360m
$1.0 \times 10^{-18} (E/100 \mathrm{TeV})^{-2.0}$	GR	0.88	7.2	16
	DIS	0.09	0.8	1.6
$1.5 \times 10^{-18} (E/100 \mathrm{TeV})^{-2.3}$	GR	0.38	3.1	6.8
	DIS	0.04	0.3	0.7
$2.4 \times 10^{-18} (E/100 \mathrm{TeV})^{-2.7}$	GR	0.12	0.9	2.1
	DIS	0.01	0.1	0.2

Number of Glashow Resonance (from a pp source) events per year with visible energy between 5 and 7 PeV

How Do Point Sources Scale?

In the presence of background (i.e. for incoming muons including lower energies): ≈ sqrt(area)·resolution

- Expect better resolution from longer lever arm (factor 2 for parts of the sky?)
- Larger effective area from larger instrumentation
- We know we are not using the best reconstruction
 - limit is computing power!
- Aim for overall increase of factor ≥5 for "traditional" PS

≈
sqrt(area increase)
x
resolution increase

Opening Up the Southern Sky (even more)

Expand the surface veto (IceTop-like, air cherenkov, ...) to veto CR showers (and thus atmospheric muons and neutrinos)

Photo-detection Technology

Baseline: IceCube "DOM" (digital optical module) - simplified using "modern" technology

IceCube DOM

KEY:

Component identical
Component eliminated

Component redesigned

Next-Generation DOM

Photo-detection Technology

Alternative: many small PMTs in one module

- 14" diameter pressure vessel
- 24x 3" PMTs (Hamamatsu R12199-02)
- 2x effective area of standard IceCube module
- Full 4π coverage

Photo-detection Technology

Alternative: use wavelength-shifters ("WOM")

- large collection area
- better UV sensitivity
- low noise rate
- cost effective

Conclusions

Stay tuned!

- We are designing a next-generation detector: "IceCube-Gen2" including PINGU, a highenergy upgrade and a surface veto
 - We can measure the neutrino mass hierarchy with PINGU (in addition to lots of other physics)
 - A high-energy upgrade with a significantly higher detection rate in all flavours is possible

Backup

Extended Depth Range

The ice 150m-200m below and ~100m above the current IceCube strings (1km length) is usable!

Aperture For Coincident Events (v, y, CR)

Many more events that go through both surface and in-ice array with an extended detector - great for CR physics and veto!

Opening Up the Southern Sky (even more)

