

Introduction:

• Overview of H rare decays searches performed by CMS

The talk deals with Higgs boson decays having a very low oxBR predicted by the SM:

• H → µµ

This talks also addresses decays of the Higgs boson strongly suppressed by the SM:

- LFV Η → τμ
- H→Invisible

Event reconstruction – overview:

Particle Flow (PF)

Most of the analyses presented rely on the use of the PF

• Combining all the information from the different CMS sub-systems to identify all the stable particles in the event: e^{\pm} , μ^{\pm} , γ , h^{\pm} , h^{0}

$H \rightarrow \mu \mu$ (BR ~ 2.19.10⁻⁴)

http://arxiv.org/pdf/1410.6679v1.pdf

Motivation:

- After the Higgs boson discovery, we need to measure the Higgs boson properties: among them its couplings to fermions!
- Check non-universality of Higgs boson couplings to fermions
 - > Confront H \rightarrow µµ and H \rightarrow TT decay rates (already observed by CMS)

• H→µµ:

Only LHC-accessible test of Higgs couplings to 2nd generation fermions

Very clean final state, but very small expected rate and nonnegligible background

Analysis strategy:

- Search for a resonance peak in the di- μ invariant mass spectrum on top of a falling DY dominated (+tt, ZZ, WW) background
- Analysis sensitivity increased by an extensive categorization:
 - > The categorization is based on Jet-multiplicity, $p_T^{\mu\mu}$, m_{ii}

Event selection:

• Opposite sign, isolated muons with $p_T > 25$ GeV

2-Jet category	$Jet-p_T^{lead} > 40 + Jet p_T^{sublead} > 30 + p_T^{miss} < 40$			
	VBF-tight	GF-tight	Loose	
	M _{jj} >650 + Δη _{jj} >3.5	$p_T^{\mu\mu} > 50 + M_{jj} > 250$	No-VBF && no-GF	
0/1-Jet category	! (2-Jet category)			
	Tight	Loose	-	
	p _τ ^{μμ} > 10	p _T ^{μμ} < 10	-	

The above categories are further subdivided to further improve the sensitivity exploiting the expected $m_{\mu\mu}$ resolution

Н→µµ

Sig. and Bkg. estimation:

- Bkg shape & normalization \rightarrow from data
- Selection ϵ + Sig. estimation \rightarrow from MC

Results:

• Fit to $m_{\mu\mu}$ with parametrized Sig+Bkg shape

Results:

• Simultaneous fit in all the categories and extraction of upper limit on $\sigma xBR(H \rightarrow \mu \mu)$

No Signal \rightarrow Upper Limit on $\sigma x BR(H \rightarrow \mu \mu) @95\%$ CL: Exp. $@m_{H}=125$ GeV: $6.5^{+2.8}_{-1.9} \times \sigma_{SM}$ Obs. $@m_{H}=125$ GeV: 7.4 $\times \sigma_{SM}$

$H \rightarrow \tau \mu \ (LFV)$

Motivation:

• In the SM LFV decays are forbidden. Nevertheless they are admitted if SM is considered an effective theory p

- LFV decays of the Higgs boson can also "naturally" occur in BSM , e.g.:
 - Models that predict more than 1 Higgs boson
 - Composite Higgs models

Current constraints

- Indirect searches so far: LFV mediated by a virtual Higgs
- $\mu \rightarrow e$ strongly constrained by $\mu \rightarrow e\gamma$ searches: BR(H-> μe) < O(10⁻⁸)
- $\tau \rightarrow \mu$, $\tau \rightarrow e$ less stringent \implies BR(H-> μe) < O(10%)

Observation of Higgs Boson \implies Possibility of direct search LFV $H \rightarrow \mu \tau!$

CMS presents the first direct search for LFV $H \rightarrow \mu \tau$

H→τμ (LFV)

Analysis strategy:

- Search performed in 2 channels: $\mu \tau_e$ and $\mu \tau_{had}$
- Final state signature similar to the SM $H\rightarrow \tau\tau$. But there are some kinematical differences

H→τμ (LFV)

Analysis strategy:

- Search performed in 2 channels: $\mu \tau_e$ and $\mu \tau_{had}$
- Final state signature similar to the SM $H \rightarrow \tau \tau$. But there are some kinematical differences

Categories: 0-Jet / 1-Jet / 2-Jets

H→τµ (LFV)

• The sensitive variable is the **collinear mass**, defined as:

H→τμ (LFV)

M_{coll} independent systematics:

- Electron and tau ε/ID/iso~2%-9%
- ZZ+Jets and WW bkg:10%-30%

Combining all the channels

M_{coll} dependent systematics:

- Tau Energy Scale ~3%
- Jet Energy Scale ~3%-7%

If the excess is interpreted as a signal Best Fit: BR(H→τμ)<(0.89_{-0.37}^{+0.40})%

All measurements of the H(125) indicate the compatibility with the SM Higgs boson

Uncertainties on σx BR are large \longrightarrow H \rightarrow inv is not excluded

Non-SM H→inv. decays:

- H→neutralinos in SUSY models
- H→graviscalars (extra-dim.)
- H interaction with Dark Matter (D.M. portal theory: the Higgs boson as mediator between SM particles and DM)

Indirect search constraints

- Inferred by visible decay modes adding a $\Gamma_{\rm inv}$ term in the combined fit.
- CMS result: upper limit on H(inv.) BR = 0.89 @95% CL

Direct search constraints

• H boson recoiling against a visible system

CMS direct search VBF production mode

- First search for H(inv.) in the VBF production mode!
- Relatively large σ_{SM} but 2Jets + E_T^{miss} suffers from large background
- Major Backgrounds:
 - Z(vv)+Jets
 - W(ev)+Jets + W(τv)+Jets
 - QCD multijet + tt
- VBF topology help to reduce the background: The event selections ask for 2 forward jets with high m_{jj} and high rapidity gap + large E_T^{miss}

VH production

- Lower σ_{SM} respect VBF but Z boson + E_T^{miss} provides a clearer topology
- $Z(\underline{\alpha})H(inv)$: hight p_T isolated leptons from Z, high E_T^{miss}
 - Major bkg: $Z(\underline{\ell})Z(inv)$ and $W(v\underline{\ell})Z(inv)$
- Z(bb)H(inv): jet pair consistent with $Z \rightarrow bb$, large E_T^{miss}
 - Major bkg: Z(bb)Z(inv), W(vb)Z(inv), Z+bb, tt

Results:

No evidence for a signal in any of the 3 decay channel

- Assuming σ_{SM} Exp.(Obs.) Lim. on σ_{H} X BR(H \rightarrow inv) = 0.58 (0.44)@95% CL
- Better constraint than the one given by indirect searches
- Interpretation of the result in terms of dark-matter portal theory:
- > If $m_{\chi} < M_{H}/2$ it is possible to relate the Γ_{inv} to σ (DM-nucleon) scattering

H→Invisible NEW!! (Jan 2015)

HIG-14-024-pas

Search for new physics with low- $E_T \gamma$ + E_T^{miss} final state DM-particle

- In some SUSY scenarios, the H_{125} boson can decay into a gravitino(\tilde{G}) and a neutralino(\tilde{X}_1^0)
- In these models \tilde{G} is the lightest supersymmettric particles while the X_1^0 is the next-to-lightest: so $\tilde{X}_1^0 \rightarrow \tilde{G} + \gamma$

The monophoton final state can constrain extensions of the SM

• This decay mode produces a single isolated photon + E_T^{miss} from the undetected \tilde{G}

• If $m_{\chi_1^0} < m_H/2$ the decay $h \rightarrow X_1^0 X_1^0 \rightarrow \gamma \gamma$ would dominate \implies interesting region $m_H/2 < m_{\chi_1^0} < m_H \implies$ and since $m_H = 125$ the $E_T(\gamma)$ and E_T^{miss} are relatively low

Required $E_T(\gamma)>45$ and $E_T^{miss}>40$

First CMS search in this low-energy regime

NEW!! (Jan 2015)

Major background:

• Irreducible from SM $Z\gamma \rightarrow \nu\nu\gamma$

Results:

• Search for new physics in the $\gamma + E_T^{miss}$ final state has been performed with an integrated luminosity of 7.3 fb⁻¹@8TeV

• No evidence for new physics \implies upper limits have been placed as function of E_T^{miss}

Conclusion:

- Different searches for Higgs boson rare decays have been performed in CMS using the whole LHC Run-1 dataset (5fb⁻¹@7TeV + 19fb⁻¹@8TeV) :
 - H \rightarrow µµ: **NO EXCESS FOUND** \rightarrow **UPPER LIMIT ON BR~0.0016** will reach $3\sigma(5\sigma)$ sensitivity with 450(1200) fb⁻¹
 - H→μτ (LFV): SLIGHT EXCESS of 2.5σ → local p-value 0.007 @ mH = 126 GeV The constraints on BR(H→μτ) could be interpreted as constraints on the Yukawa couplings
 - H→invisible: NO EXCESS FOUND → LIMIT ON BR ~0.44 @ 95% CL
 > search for new physics in low-ET(γ) + E_T^{miss} : first limits for h→X₁G→GGg in pp-coll. The constraints on BR(H→inv) have been interpreted as constraints on the σ(Dark-Matter->nucleon) scattering

BACK-UP

BACK-UP

Higgs cross sections

BACK-UP

Event reconstruction – overview:

Ingredients of the reconstruction common to the following analyses:

• Vertex:

 \rightarrow Ordered by $\sum_{tracks} p_T^2$

• Jets:

 \rightarrow PFJets reconstructed using collinear/infrared safe algorithm anti-kt R=0.5

 \rightarrow correction for the Pile-Up (PU), $|\eta|$ and p_T dependences $\frac{g_1^{1000}}{14000}$

• E_T^{miss}:

 \rightarrow Evaluated from the list of reconstructed PF candidates

 \rightarrow Corrected propagating the JES corrections

$$\vec{E}_T^{miss} = -\sum_{PF-cand} \vec{p}_T$$

Hadronic Taus:

 \rightarrow Hadron Plus Strip algorithm (PF based)

HPS algorithm for tau ID

τ decay mode		resonance	Branching Ratio [%]
leptonic	$\tau^- \rightarrow \ell^- \nu_\tau \bar{\nu}_e$	-	17.83 pm 0.04
leptonic	$\tau^- \rightarrow \mu^- \nu_\tau \bar{\nu}_\mu$	-	17.41 pm 0.04
TOTAL leptonic			35.24 ± 0.11
1-Prong	$\tau^- \rightarrow \pi^- \nu_{\tau}$	-	10.83 ± 0.06
1-Prong + $\pi^0 s$	$\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$	$\rho^{-}(770)$	25.52±0.09
1-Prong + $\pi^0 s$	$\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_\tau$	$a1^{-}(1260) \rightarrow \rho^{-}(770)$	9.30±0.11
3-Prongs	$\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$	$a1^{-}(1260) \rightarrow \rho^{0}(770)[\sigma^{0}(500)]$	9.31±0.06
	54.96±0.82		

Table summarizing the τ decay modes considered in the analysis.

H→τμ (LFV)

Results:

Constraint on BR(H \rightarrow µT) \frown Constraint on Yukawa couplings

• At tree-level the LFV decays are: $L_{V} = -Y_{e\mu}\overline{e}_{L}\mu_{R}h - Y_{\mu e}\overline{\mu}_{L}e_{R}h - Y_{e\tau}\overline{e}_{L}\tau_{R}h - Y_{\tau e}\overline{\tau}_{L}e_{R}h - Y_{\mu\tau}\overline{\mu}_{L}\tau_{R}h - Y_{\tau\mu}\overline{\tau}_{L}\mu_{R}h$ • The BF in term of Yukawa couplings is:

interpreted

$$BR(H \to \ell^{\alpha} \ell^{\beta}) = \frac{\Gamma(H \to \ell^{\alpha} \ell^{\beta})}{\Gamma(H \to \ell^{\alpha} \ell^{\beta}) + \Gamma_{H-SM}}$$
$$\ell^{\alpha}, \ell^{\beta} = e, \mu, \tau \land \ell^{\alpha} \neq \ell^{\beta}$$

•The $\Gamma(H \rightarrow I^{\alpha} I^{\beta})$ makes the link with $Y_{\alpha\beta}$:

$$\Gamma\left(H \to \ell^{\alpha} \ell^{\beta}\right) = \frac{m_{H}}{8\pi} \left(\left|Y_{\ell^{\alpha} \ell^{\beta}}\right|^{2} + \left|Y_{\ell^{\beta} \ell^{\alpha}}\right|^{2}\right)$$

H→inv.

27

Results:

No evidence for a signal in any of the 3 decay channel

- Assuming σ_{SM} Exp.(Obs.) Lim. on σ_{H} X BR(H \rightarrow inv) = 0.58 (0.44)@95% CL
- Better constraint than the one given by indirect searches
- Interpretation of the result in terms of dark-matter portal theory:

> If $m_x < M_H/2$ it is possible to relate the Γ_{inv} to $\sigma(DM$ -nucleon) scattering

$H \rightarrow Z\gamma$ (BR ~1.54 ·10⁻³)

doi:10.1016/j.physletb.2013.09.057

Theoretical motivation

- Loop-induced process:
 - Small BR

Sensitive to new particles potentially running in the loops

 Could be substantially modified by new charged particles without affecting the ggH production cross section

Analysis strategy:

- Z→ µµ/ee decays considered
 Clean final state topology
 >3-body M_{inv} resol. ~1-3%
 >Low level of background
- Categorization according to mass resolution and S/B

H→Zγ

Principal Bkg: IRREDUCIBLE: Zγ from SM production REDUCIBLE: FSR from Z, Z+Jets where Jet/lepton fake γ

Object Selection:

- γ: **ECAL supercluster** + PF isolation \rightarrow ε ≈ 90%
- *e*: **ECAL supercluster** + track in the tracker $\rightarrow \epsilon \approx 60\% [p_T \sim 10] 90\% [p_T \sim 50]^{T}$
- μ : Global fit to trajectory using tracker + muon system $\rightarrow \epsilon \approx 95\%$

Event pre-selection:

• 2 opposite sign, same flavour leptons consistent with Z decay + 1γ

Final kinematic selection

+
$$m_{//} > 50 \text{ GeV} \rightarrow \text{reject H} \rightarrow \gamma \gamma^* \rightarrow //\gamma + m_{//\gamma} \text{ in [100, 180] GeV/c}^2$$

+ $\Delta R_{//}, \Delta R_{/\gamma} > 0.4 \rightarrow \text{reject ISR} + (m_{//} + m_{//\gamma}) > 185 \rightarrow \text{reject FSR}$

H→Zγ

Event Classes:

**Resolution much better in the BARREL than in the ENDCAPS

- Enhanced analysis sensitivity
- \rightarrow Categorization made on expected $m_{//\nu}$ resolution^{**} and S/B

4 mutually exclusive event classes defined in terms of η and shower shape of γ (R₉)

Class 1	Class2	
I/γ all in the BARREL + high R ₉ *Signal: 34% - Data: 20%	I/γ all in the BARREL + low R ₉ *Signal: 31% - Data: 31%	$R_{9} = \frac{E(3x3)}{E(3x3)}$
Class 3	Class 4	E(supercluster)
At least 1 / in the ENDCAP *Signal: 18% - Data: 20%	γ in the ENDCAP *Signal: 17% - Data: 29%	Not converted γ: R ₉ > 0.94

*this is when $Z \rightarrow Z \mu \mu$

H→Zγ

Results:

- Background model: fit with polynomial function the $m_{/\!/\gamma}$ distribution in [100, 180] GeV
- Signal is described using a NLO ME monte carlo generator

No excess has been found $\rightarrow \sigma$ upper limit 4-25 x σ_{SM} @95% CL