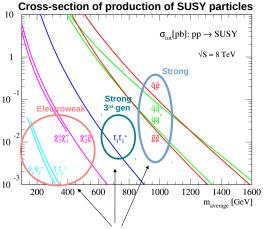
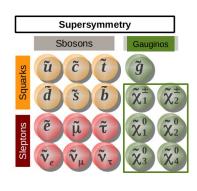
Searches for electroweak production of supersymmetry, R-parity violating signatures and events with long-lived particles with the ATLAS detector

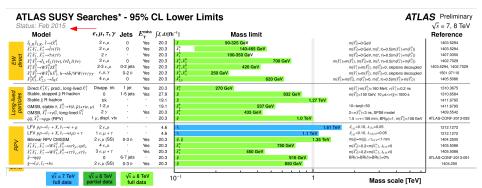
Itzebelt Santoyo Castillo


On behalf of the ATLAS Collaboration


LLWI 2015

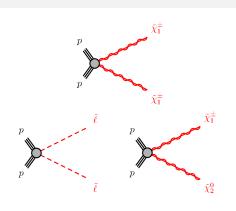
Introduction

Search strategies developed by ATLAS target all these SUSY production modes



Stringent limits on strong production (squarks and gluinos) with masses above 1 TeV.

See talk from C.W Kalderon


Run 1 Results from ATLAS

Focus of this talk is on the $\underline{\text{recent results}}$ from electroweak, RPV and long lived Supersymmetry searches with the 2012 data collected by ATLAS

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

Electroweak SUSY

Electroweak (EWK) production can be dominant at the LHC.

Low cross sections

Multileptonic signatures with large missing transverse energy

Suppressed SM backgrounds

ATLAS SUSY Searches* - 95% CL Lower Limits

US

Status: Feb 2015 Model e, μ, τ, γ $\int \mathcal{L} dt [fb^{-1}]$ Mass limit $\tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 90-325 GeV $\tilde{X}^{\dagger}_{1}\tilde{X}_{1}^{-}, \tilde{X}^{\dagger}_{1} \rightarrow \tilde{\ell}_{V}(\ell \bar{\nu})$ 2 e.u 20.3 140-465 GeV $\tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{\dagger} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu})$ 20.3 100-350 GeV $\tilde{X}_{1}^{\dagger}\tilde{X}_{2}^{0} \rightarrow \tilde{\ell}_{1} \nu \tilde{\ell}_{1} \ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{1} \ell(\tilde{\nu}\nu)$ 3 e.u 20.3 700 GeV $m(\tilde{E}_{i}^{\pm})=m(\tilde{E}_{i}^{0})$, $m(\tilde{E}_{i}^{0})=0$, $m(\tilde{E}_{i}^{0})=0.5(m(\tilde{E}_{i}^{\pm})+m(\tilde{E}_{i}^{0}))$. 2-3 e.u 20.3 420 GeV $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}\rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0}, h\rightarrow b\bar{b}/WW/\tau\tau/\gamma\gamma$ e, μ, γ 20.3 250 GeV 20.3 620 GeV $m(\tilde{\ell}_{2}^{0})=m(\tilde{\ell}_{1}^{0}), m(\tilde{\ell}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\ell}_{2}^{0})+m(\tilde{\ell}_{1}^{0}))$ 10^{-1}

ATLAS Preliminary

 $\sqrt{s} = 7.8 \text{ TeV}$ Reference 1403.5294

1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086

Mass scale [TeV]

 $m(\tilde{\chi}_1^0)=0 \text{ GeV}, m(\tilde{\ell}, \tilde{\tau})=0.5(m(\tilde{\chi}_1^+)+m(\tilde{\chi}_1^0))$

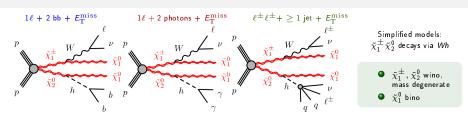
 $m(\hat{x}_{i}^{0})=0$ GeV, $m(\hat{x}_{i}^{0})=0.5(m(\hat{x}_{i}^{0})+m(\hat{x}_{i}^{0}))$

 $m(\tilde{X}_{+}^{\pm})=m(\tilde{X}_{-}^{0})$ $m(\tilde{X}_{+}^{0})=0$ slentons decoupled

 $m(\tilde{X}_{+}^{\pm})=m(\tilde{X}_{-}^{0})$ $m(\tilde{X}_{-}^{0})=0$ slentons decoupled

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 10 theoretical signal cross section uncertainty.

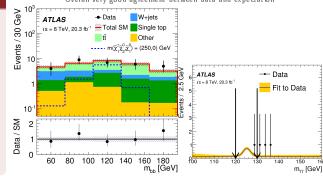
EWK RPC Search Strategy

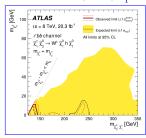

Signature-based analyses characterised by lepton multiplicity (L) and missing transverse energy

Channel	p $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_2^0$	$p \qquad \qquad \tilde{\chi}_1^{\pm}$ $p \qquad \qquad \tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$	$\bigcap_{p} \tilde{\chi}_{2}^{0}$	p p $\tilde{\ell}$
$1L+bb/\gamma\gamma$	via Wh			
* 2L (e, μ)	via WZ, Wh (SS)	via $ ilde{\ell}/ ilde{ u}, WW$		with $ ilde{\ell}= ilde{e}, ilde{\mu}$
* 2L (au)	via $ ilde{ au}/ ilde{ u}$	via $ ilde{ au}/ ilde{ u}$		with $ ilde{\ell}= ilde{ au}$
* 3L (e,μ, au)	via $ ilde{\ell}, ilde{ au},WZ,Wh$			
** 4L (e,μ, au)	İ		via $ ilde{\ell}, ilde{ au},ZZ$	

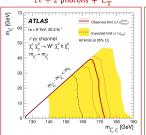
Supersymmetric Models

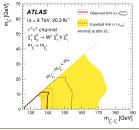
- Simplified Models (discussed here)
- One simulated process with 100% BR
- (**) General Gauge Mediation (GGM)
 - gauge-mediated SUSY breaking mechanism with gravitino as the LSP

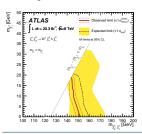


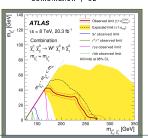

Strategy

- all 3 signatures combined
- 2 signal regions exploiting $m_{
 m T}^W$, $m_{
 m CT}$ and requiring m_{bb} to be around the Higgs mass
- $W+{
 m jets}$ and tar t SM background processes dominate
- 2 signal regions exploiting $m_{\mathrm{T}}^{W\gamma}$, and $\Delta\phi(W,\gamma)$
- VH and ttH SM background processes dominate
- 6 signal regions exploiting $m_{
 m eff}$, and $m_{
 m T}$
- VV and non-prompt lepton SM background processes dominate


Overall very good agreement between data and expectation

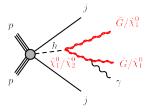

 $1\ell + 2 bb + E_{\mathrm{T}}^{\mathrm{miss}}$


 $1\ell+2$ photons + $E_{\mathrm{T}}^{\mathrm{miss}}$


 $\ell^{\pm}\ell^{\pm} + \geq 1$ jet + $E_{\mathrm{T}}^{\mathrm{miss}}$

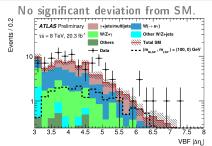
 $3\ell + E_{\rm T}^{\rm miss}$ (arXiv:1402.7029)

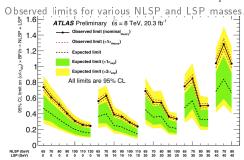
Combination + 3L

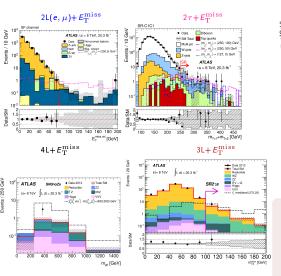

No significant deviation from

SM

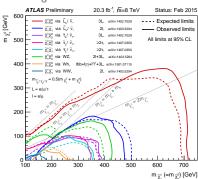
- Combination of all 3 channels
 + 3L analysis shows the best exclusion (mind the axis range)
- Excluding charginos with mass up to 250 GeV for massless LSP


Higgs-boson production via vector-boson-fusion (VBF) decaying into neutralinos and/or gravitinos


 Interpretation in GMSB and NMSSM models


Analysis Design

- Event Selection: lepton veto, ≥ 2 jets, ≥ 1 photon, $E_{\mathrm{T}}^{\mathrm{miss}}$
- event selection optimized to exploit VBF di-jet topology m_{ij} , $\Delta \eta(jj)$
- main backgrounds multi-jets and gamma+jets



EWK SUSY Summary

No significant deviation from SM

- Wide variety of signatures and decays explored
- Combination of final states possible due to orthogonality
- Utilise different kinematic variables to reduce SM backgrounds, such as dibosons, V+jets and $t\bar{t}$

RPV Supersymmetry

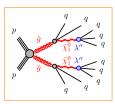

$$W_{\mathcal{R}_p} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_2$$

A quantum number relating lepton (L) and baryon (B) numbers is known as R-parity (R_p), defined as:

$$R_{\rm p} = (-1)^{3(B-L)+2S}$$

R-parity violation (RPV) implies:

- Proton decay in some scenarios (depending on the λ couplings)
- LSP is no longer stable and can decay to SM particles with λ couplings

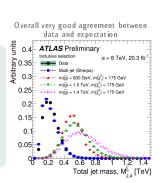


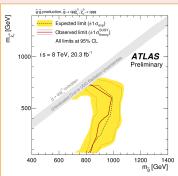
*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

US

NEW!

RPV Multijet searches



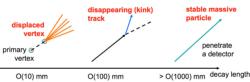

Analysis Design

- High jet multiplicities, no missing transverse energy requirements
- Discrimination using the sum of the masses of the 4 leading large-R (R=1.0) jets ($M_{J,4}^{\Sigma}$, η , jet $ho_{
 m T}$
- QCD background processes dominate, estimated with data-driven method using jet mass templates derived in a 3-jet control region
- 3 signal regions are defined with at least 4 large-R jets (2/3 binned in $M_{J,4}^{\Sigma}$)

 RPV "UDD" decays lead to a final state characterised by many partons (can be heavy flavor)

- Gluino pair decays to ten or more quarks via intermediate neutralinos
- Direct gluino decays to six quarks is also explored

In the 10-quark model, gluinos are excluded for $m(ilde{g}) < 1$ TeV for neutralino masses with

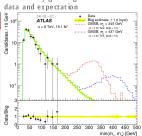

Long-Lived Supersymmetry

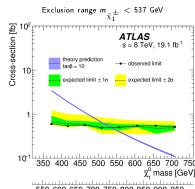
Long Lived Particles (LLP) are predicted by a wide variety of models: Hidden Sectors, RPV violating decays, Split-SUSY, AMSB, GMSB,

Signatures include:

- Disappearing tracks
- Stopped gluino or squark R-hadrons
- Non-pointing and delayed photons
- Stable LLPs
- Displaced vertices

All these signatures depend on lifetime




- Interpreted in many SUSY models, e.g. GMSB $(au_1$ as NLSP)
- Four different signatures probed: stable sleptons, leptoSUSY, charginos and R-hadrons (bound states composed of the LLP and light SM quarks or gluons)
- GMSB: two muon-like SMPs, high β values
- $\begin{tabular}{ll} \hline \textbf{Signal discrimination using mass measurements} \\ \hline (m = \frac{\beta}{\beta\gamma}), \text{ with } \rho \text{ taken from the charge} \\ \hline \textbf{particle track, time measurement } (\beta) \text{ in the calorimeters and muon system, and energy loss} \\ \hline (\beta\gamma) \text{ measured in the pixel detector} \\ \hline \end{tabular}$

Analysis Design

- Events selected with two SMPs and 0.2 < eta < 0.95
- High ho_T muons with mis-measured eta as the dominating background, taken from data
- Discriminating variables: β (taken from ToF), $\beta\gamma$ (can be measured by energy loss $\frac{dE}{dx}$ in pixel detector)

Overall very good agreement between data and expectation

Summary

- The ATLAS SUSY search for electroweak production, R-parity violating and LLP scenarios using the full 8 TeV data delivered by the LHC during Runl was presented
- New and improved sensitivity for a wide variety of SUSY scenarios
- No significant deviation from SM observed
- Stringent exclusion limits are set on masses of SUSY particles
- Higher energy offers possibility of fast discovery in Run-2 for strongly produced SUSY (e.g. in RPV or LLP) but for EWK production the cross-section gain is smaller, hence, more luminosity will be required.

Stay tuned for Run II

Backup

Standard Model Background Modelling

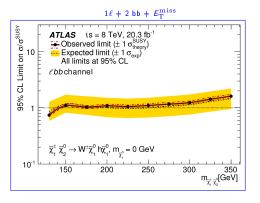
Some SUSY processes can be SM-like.
SUSY searches rely on accurate modelling of SM background.

Standard Model Background

(prompt leptons)

Reducible (non-prompt leptons)

Dominant sources: normalised to data in dedicated Control Regions Sub-dominant sources: estimated with MC-simulated data


Data-driven estimation analyses dependent

All predictions are thoroughly validated using dedicated **Validation Regions**

Signal Regions

NEW!

lack 95% CL (normalised) upper limits on the cross section as a function of $\mathbf{m}(\tilde{\chi}_1^{\pm})$ for a massless LSP