

Dark Matter Searches in the Monojet, Monophoton, and Monolepton Final States at CMS

Isabelle De Bruyn

Vrije Universiteit Brussel

on behalf of the CMS Collaboration

February 17, 2015

Lake Louise Winter Institute 2015

Introduction

- Models and Signatures at CMS
- Monojet
- Monophoton
- Monolepton
- Dark Matter Interpretation
- Prospects for Run II

Models

► Effective Field Theories

$$\Lambda = rac{M_V}{\sqrt{g_q g_\chi}}$$
 perturbative if $g_q g_\chi < 4\pi$

- ▶ Parameters: cut-off scale Λ , DM mass M_{χ}
- ► Operators: vector, axial-vector → spin-independent/spin-dependent interactions
- ► Validity: M_V > invariant mass of DM pair → simplified models (monojet and monophoton)

Signatures at CMS

DM interacts weakly \Rightarrow not detected \Rightarrow use missing transverse energy (MET)

Isabelle De Bruyn (VUB)

Lake Louise Winter Institute 2015

The CMS Detector

Monojet: Event selection

<u>Jet:</u>

Ref.: CMS-EXO-12-048 arXiv:1408.3583

Experiment at LHC. CERM

umi section: 31

Data recorded: Fri Oct 5 20:41:32 2012 CES Run/Event: 204553 / 26729384

CMS

- ▶ $p_T > 110$ GeV, $|\eta| < 2.4$
- ▶ jet content: $p_{T,neutral} < 70\%$, $p_{T,charged} > 20\%$
- > allow 2nd jet (p_T > 30 GeV, $\Delta \phi_{j_1 j_2} < 2.5$)
- ▶ veto 3^{rd} jet ($p_T > 30$ GeV)
- ⇒ Reject QCD, tt̄, instrumental backgrounds

Missing Energy:

- main analysis variable
- high values

Leptons:

- ▶ veto isolated e, μ
- $\blacktriangleright\,$ veto well-identified $\tau\,$
- \Rightarrow Reject W, Z, dibosons, single t

Monojet: Background estimation and signal extraction

$Z(\nu\nu)$ +jets

 $Z(\mu\mu)$ control sample \Rightarrow remove μ correct for BR, A, ϵ , contamination μ not taken into account in MET

 $W(I\nu)+jets$

 $W(\mu\nu)$ data \Rightarrow correct $\frac{W(e/\tau\nu)}{W(\mu\nu)}$ ratio correct for A, ϵ , contamination

QCD

MC x scale factor

From simulation

 $t\bar{t}$, Z(II)+jets, single t, dibosons

$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV) \rightarrow	>250	>300	>350	>400	>450	>500	>550
Total SM	51800 ± 2000	19600 ± 830	8190 ± 400	3930 ± 230	2050 ± 150	1040 ± 100	509 ± 66
Data	52200	19800	8320	3830	1830	934	519

Isabelle De Bruyn (VUB)

Monophoton: Event selection

Photon:

- \blacktriangleright $E_T > 145$ GeV, $|\eta| < 1.44$
- > photon ID: H/E < 0.05, shower shape
- isolated, timing requirement

Missing Energy:

- $E_T^{miss} > 140 \text{ GeV}$
- $\Delta \phi(E_T^{miss}, \gamma) > 2.0$
- \Rightarrow Reject γ +jets

Leptons:

- \blacktriangleright veto isolated \textit{e}, μ
- \Rightarrow Reject W(Iu) γ

Jets:

• veto 2nd jet ($p_T > 30$ GeV, $\Delta R > 0.5$)

 \Rightarrow Reject QCD

Isabelle De Bruyn (VUB)

Ref.: CMS-EXO-12-047 arXiv:1410.8812

Monophoton: Background estimation and signal extraction

From simulation

 $\mathsf{Z}(
u
u)\gamma$, $\mathsf{W}(I
u)\gamma$, $\gamma+\mathsf{jet}$, $\mathsf{Z}(II)\gamma$, $\gamma\gamma$

 $W^* \rightarrow e \nu$

data-driven e misidentified as γ track matching inefficiency

QCD

data-driven jet misidentified as γ correct for QCD direct γ production

Single bin counting

Isabelle De Bruyn (VUB)

Monolepton

- ► Clean leptonic signature ⇒ less background ⇒ easier to trigger
- Sensitive to different couplings to *u* and *d* quarks

Transverse mass M_T : shape depends on ξ

Monolepton: Event selection

Electrons:

- ▶ *E_T* > 100 GeV
- isolated
- veto $2^{nd} e (E_T > 35 \text{ GeV})$
- impact param. w.r.t. primary vertex
- \Rightarrow Reject Drell-Yan, cosmic rays

Missing Energy:

•
$$0.4 < \frac{p_T'}{E_T^{miss}} < 1.5$$

• $\Delta \phi(I, E_T^{miss}) > 2.5$

 \Rightarrow Reject QCD

Ref.: CMS-EXO-12-060 arXiv:1408.2745 <u>Muons:</u>

▶ $p_T > 45$ GeV, $\frac{\sigma_{p_T}}{p_T} < 30\%$

isolated

- veto $2^{nd} \mu (p_T > 25 \text{ GeV})$
- impact param. w.r.t. primary vertex

Monolepton: Background estimation and signal extraction

$W(I\nu)$

MC × scale factor scale factor: NLO QCD and EW corrections as a function of M_T

QCD

data-driven jets misidentified as electrons correct for contamination

From simulation

 $t\bar{t}$, single t, Drell-Yan, dibosons, γ +jets

background parametrization (tail): $f(M_{\rm T}) = e^{a+bM_{\rm T}+cM_{\rm T}^2}M_{\rm T}^d$

M_{T} shape analysis: multi-bin counting

Monolepton: Limits on contact interaction scale

DM Interpretation: Limits on interaction x-section

DM Interpretation: Limits on contact interaction scale

Simplified model where mediator mass is varied:

Monojet

- Vector interactions
- ► Light mediator, accessible at LHC ⇒ resonant behaviour

Monophoton

- $\blacktriangleright \text{ High } M: \sim \text{EFT limits}$
- Medium M: stronger limits
- Low M: weaker limits

Isabelle De Bruyn (VUB)

Prospects for Run II

LHC

- higher energy
- higher luminosity

Analysis improvements

- shape analysis
- refine background estimate

Interpretation

- make more comprehensive
- simplified models

Backup

DM samples

MadGraph (LO) Pythia 6.4.26 tune Z2* CTEQ 6L1

Z+jets, W+jets, $t\bar{t}$, W γ , Z γ

MadGraph (LO) Pythia 6.4.26 tune Z2* CTEQ 6L1

QCD, ZZ, ZW, WW

Pythia 6.4.26 tune Z2* CTEQ 6L1

Single t

Powheg Pythia 6.4.26 tune Z2* CTEQ 6.6M

Generators: Monophoton

DM samples

MadGraph

$$Z\gamma \rightarrow \nu \bar{\nu} \gamma$$
, $W\gamma \rightarrow I\nu \gamma$

MadGraph corrected to NLO $(E_T^{\gamma} \text{ dependent, with MCFM})$

$Z\gamma \rightarrow II\gamma, \gamma\gamma$

Pythia 6.4.26 (LO) CTEQ 6L1

γ +jet

Pythia 6.4.26 (LO) CTEQ 6L1 corrected for NLO

$W \rightarrow I \nu$, Drell-Yan $(\tau \bar{\tau})$, WW, WZ, ZZ

Pythia corrected to NLO

Drell-Yan ($ee, \mu\mu$)

Powheg

QCD, γ +jet

Pythia

tī

MC@NLO Herwig corrected to NNLO

Single t

Powheg Pythia

Monojet: Background estimation

$Z(\nu\nu)$ +jets

control sample:

- selection
- \blacktriangleright no μ veto
- ▶ 2 µ, M_{inv} around Z-mass

remove μ correct for BR, A, ϵ , contamination μ not taken into account in MET

$W(I\nu)$ +jets

control sample:

- selection
- \blacktriangleright no μ veto
- μ , M_T around W-mass W($\mu\nu$) correct $\frac{W(e/\tau\nu)}{W(\mu\nu)}$ ratio correct for A, ϵ , contamination ($t\bar{t}$)

QCD

 $\label{eq:MC} \begin{array}{l} \mathsf{MC}(\mathsf{signal region}) \times \mathsf{scale factor} \\ \mathsf{scale factor} = \mathsf{data}/\mathsf{MC} \\ \mathsf{from QCD enriched region in data:} \end{array}$

- selection
- relax Njets, $\Delta \phi_{j_1,j_2}$
- $\blacktriangleright \Delta(E_T^{miss}, j_2) < 0.3$

$W^* \rightarrow e \nu$

e misidentified as γ track matching inefficiency ϵ :

- from $Z \rightarrow ee$ sample
- tag-and-probe

control sample:

- selection
- shower matched to track

control sample x $\frac{1-\epsilon}{\epsilon}$

QCD

jet misidentified as γ correct for QCD direct γ production sample x scale factor(control sample) sample:

selection

 \blacktriangleright fail γ isolation

 $\begin{array}{l} \text{scale factor} = \frac{\text{pass } \gamma \text{ iso } - \text{true } \gamma}{\text{fail } \gamma \text{ iso}} \\ \text{control sample: } E_T^{\textit{miss}} < 30 \text{ GeV} \end{array}$

Monolepton: Background estimation

$W(I\nu)$

MC x scale factor scale factor: NLO QCD and EW corrections as a function of M_T

QCD

jets misidentified as electrons correct for contamination sample x scale factor(control sample) sample:

- selection
- ▶ fail e isolation

scale factor $= \frac{r}{1-r}$, $r = \frac{\text{isolated } e}{\text{all events}}$ control sample: $1.5 < E_T / E_T^{miss} < 10$

Dominant systematics

Monojet:

- renormalization/factorization scale
- ISR modeling
- JES, PDFs, pile-up, lumi

Monophoton:

- PDFs + renormalization/factorization scale
- Data/MC scale factor
- > pile-up, energy calibration γ , jets, MET

Monolepton:

- $\blacktriangleright \mu$ momentum scale
- PDFs
- W K-factor (2 ways of combining EW and QCD corrections)
- e energy scale, Data/MC scale factor, MET, μ momentum resolution, e energy resolution, pile-up

Isabelle De Bruyn (VUB)