

3rd Generation SUSY Searches at CMS

Daryl Hare, Fermilab On behalf of the CMS Collaboration

Outline

- SUSY in 30 seconds
- Why do we care about 3rd Gen?
- Recent Publications:
 - Inclusive Search in Hadronic Final States using MT2 (arXiv: 1502.04358)
 - Razor Variables in Events with B-tagged Jets (arXiv:1502.00300)
 - Search with b Jets Plus 4 W Bosons (arXiv:1412.4109)
- Conclusions

SUSY Overview

SUSY Production at LHC

 Gluinos, 1st and 2nd gen squarks have highest cross sections

Third generation squarks

- Must be light for naturalness
- Highly motivated discovery potential from 125 GeV Higgs
- ElectroWeak production
 - Charginos, neutralinos, and sleptons
 - o Small cross sections
 - Feasible discovery potential if squarks and gluinos are simply too heavy

Natural SUSY

Hierarchy problem

- Unnatural cancelations to the Higg's mass loop corrections to get a low mass Higgs
- SUSY provides a natural -cancellation **assuming** superpartner masses are not too large
 - SUSY is a broken symmetry
 - If this breaking is not "soft", large Higgs mass corrections terms are introduced

Natural SUSY

- 3rd Gen SUSY is O(TeV)
 - High Yukawa coupling means these provide most dangerous mass corrections
- stop/sbottom produced directly or via light gluino
- o 1st/2nd generation squarks can still be very heavy
- Discovery of 125 GeV Higgs boson suggests Natural SUSY may be within our reach at the LHC

A Natural SUSY Spectrum

н

н

н

н

All Hadronic Inclusive Search

- Fully hadronic final state
- Require high Stransverse mass, M_{T2}, to discriminate signal
 - Stransverse mass using visible objects and MET, recreate transverse mass of 2 parent particles

• This talk focusing on 3rd Generation Signatures

 Inclusive search includes direct squark production, gluino pair production, and H->bb decay within the SUSY cascade decay

All Hadronic Inclusive Search

CMS Collaboration arXiv: 1502.04358 19.5 fb⁻¹

RESULTS

Inclusive searches tend to give multiple signal bins, each optimized for various simplified model

Events

signal region

All Hadronic Inclusive Search

CMS Collaboration arXiv: 1502.04358 19.5 fb⁻¹

Limits (Simplified Models):

- Simplifed Models
 - Assume limited new particles to produce topological signal
 - Shown as M_{LSP} vs M_{SUSY}
 - 95% CL upper limits shown
 - Usually assume 100% BR
 - Color map shows cross section limits
 - Diagonals show kinematic 0 limits (usually assume onshell production)

Exclusion up to:

 $M_{LSP} < \sim 300 \text{ GeV}$

CMS collaboration arXiv 1502.00300 19.3 fb⁻¹

Razor with b's

- Razor variables designed to ID two squarks which each decay to a quark and a stable neutralino
- Event is classified into two megajets
 - Chosen to minimize the invariant mass of the megajets summed in quadrature
- Look for a peaking signal in R^2 vs M_R

$$M_{R} = \sqrt{\left(\left|\vec{p}^{j_{2}}\right| + \left|\vec{p}^{j_{2}}\right|\right)^{2} - \left(p_{z}^{j_{1}} + p_{z}^{j_{2}}\right)^{2}} \qquad R = \frac{M_{T}^{R}}{M_{R}}$$
$$M_{T}^{R} = \sqrt{\frac{E_{T}^{miss}\left(p_{T}^{j_{1}} + p_{T}^{j_{2}}\right) - \vec{p}_{T}^{miss} \cdot \left(\vec{p}_{T}^{j_{1}} + \vec{p}_{T}^{j_{2}}\right)}{2}}$$

CMS collaboration arXiv:1502.00300 19.3 fb⁻¹

Razor with b's

- Events sorted into exclusive signal boxes based on number of leptons and jets.
- Background estimated with a simultaneous fit of R² and M_R

Razor with b's

CMS collaboration arXiv:1502.00300 19.3 fb⁻¹

LLWI 2015 • 13

CMS Collaboration arXiv:1412.4109 19.5 fb⁻¹

b Jets and 4 W's

- Combination of 5 individual searches categorized by leptonic content of event:
 - Fully Hadronic
 - o Single-lepton
 - Same-sign dilepton
 - Opposite-sign dilepton
 - o Multilepton

Sbottom Pair Production:

Daryl Hare, Fermilab

LLWI 2015 • 15

CMS Collaboration arXiv:1412.4109 19.5 fb⁻¹

b Jets and 4 W's

- Focused on latest results here, but very broad program at CMS
- No significant excess over the Standard Model prediction has been observed so far
- Natural SUSY is still viable
 - o But we've certainly constrained the phase space available to it
 - How constrained are we?
 - Fine tuning: $SM \approx 10^{-32}$ SUSY with current exclusion $\approx 10^{-(1-2)}$
 - Coincidences at the level of 10% happen in nature
- Run II begins soon at $\sqrt{s} = 13 \text{ TeV}$
 - Preparing analysis now for quick turn around on new data
 - Exciting future at the LHC

CMS collaboration arXiv:1502.00300 19.3 fb⁻¹

+ Data

Razor with b's

 Test background fit with injected signal (σ = 0.01 pb)

 \circ M_{gluino} = 1350 GeV, M_{neutralino} = 50 GeV

- Signal contamination in sideband has negligible effect on background shape
- Excess still observed near $M_R \sim 1500$ •

Events 10⁵ 1- Total Bkgd Razor MultiJet Box L = 19.3 fb 1 b-tag 10⁴ — ≥ 2 b-tag 10³ 10² Data/Bkgd 0.4 0.6 0.8 1.2 1 1.4 R^2

CMS Simulation $\sqrt{s} = 8 \text{ TeV}$

M_□ [GeV]

Daryl H

Razor with b's

CMS collaboration arXiv:1502.00300 19.3 fb⁻¹

Just focusing on squark production

• Daryl Hare, Fermilab

LLWI 2015 • 21