Searches for squarks and gluinos with the ATLAS detector

Will Kalderon

On behalf of the ATLAS experiment

University of Oxford

17/02/15

ATLAS: Many searches, various final states, numerous models - limits around 1 TeV

Overview

ATLAS: Many searches, various final states, numerous models - <u>limits around 1 TeV</u> **Here:** Focus on three recent searches, spanning range of \tilde{q} and \tilde{g} analyses

Squark / Gluino mass

LSP mass

Overview

ATLAS: Many searches, various final states, numerous models - <u>limits around 1 TeV</u> **Here:** Focus on three recent searches, spanning range of \tilde{q} and \tilde{g} analyses

Squark / Gluino mass

Overview

ATLAS: Many searches, various final states, numerous models - <u>limits around 1 TeV</u> **Here:** Focus on three recent searches, spanning range of \tilde{q} and \tilde{g} analyses

Squark / Gluino mass

Overview

ATLAS: Many searches, various final states, numerous models - <u>limits around 1 TeV</u> **Here:** Focus on three recent searches, spanning range of \tilde{q} and \tilde{g} analyses

- arXiv: <u>1501.03555</u> [hep-ex], submitted to JHEP
- Many models targeted
 - Gluino (\tilde{g}) and squark (\tilde{q}) production
 - Decays via charginos $(\tilde{\chi}_1^{\pm})$ and sleptons $(\tilde{l}) \rightarrow$ leptons in final state
- Four regions, 1 & 2 leptons (decay chain length), soft and hard (mass splittings)
 - Soft: $E_{\mathrm{T}}^{\mathrm{miss}}$ trigger, $p_{T}^{\ell} < 25\,\mathrm{GeV}$
 - Hard: Combined $\ell + E_{\mathrm{T}}^{\mathrm{miss}} \left(+ \mathrm{jet} \right)$ triggers

 $1/2 \ \ell$ + jets + $E_{\mathrm{T}}^{\mathrm{miss}}$, Mega jets

- Discrimination from $N_{\rm jets}$, $E_{\rm T}^{\rm miss}$, m_T , $m_{\rm eff}$, topological information
- $m_T = \sqrt{2p_T^{\ell} E_{\mathrm{T}}^{\mathrm{miss}} \left(1 \cos[\Delta \phi(\vec{\ell}, \mathbf{p}_T^{\mathrm{miss}})]\right)}$

•
$$m_{\text{eff}} = E_{\text{T}}^{\text{miss}} + \sum_{i=1}^{N_{\text{jets}}} p_{T,i}^{\text{jet}} \left(+ \sum_{i=1}^{N_{\ell}} p_{T,i}^{\ell} \right)$$

 $1/2~\ell$ + jets + $E_{
m T}^{
m miss}$, Mega jets

- Discrimination from $N_{\rm jets}$, $E_{\rm T}^{\rm miss}$, m_T , $m_{\rm eff}$, topological information
- $m_T = \sqrt{2p_T^{\ell} E_{\mathrm{T}}^{\mathrm{miss}} \left(1 \cos[\Delta \phi(\vec{\ell}, \mathbf{p}_T^{\mathrm{miss}})]\right)}$
- $m_{\text{eff}} = E_{\text{T}}^{\text{miss}} + \sum_{i=1}^{N_{\text{jets}}} p_{T,i}^{\text{jet}} \left(+ \sum_{i=1}^{N_{\ell}} p_{T,i}^{\ell} \right)$
- Split event into two 'mega jets'

• Exploit symmetry to approximate rest frame - '*R*-frame': '<u>Razor variables</u>'

• Discrimination from $N_{\rm jets}$, $E_{\rm T}^{\rm miss}$, m_T , $m_{\rm eff}$, topological information

•
$$m_T = \sqrt{2p_T^{\ell} E_T^{\text{miss}} (1 - \cos[\Delta \phi(\vec{\ell}, \mathbf{p}_T^{\text{miss}})])}$$

- $m_{\text{eff}} = E_{\text{T}}^{\text{miss}} + \sum_{i=1}^{N_{\text{jets}}} p_{T,i}^{\text{jet}} \left(+ \sum_{i=1}^{N_{\ell}} p_{T,i}^{\ell} \right)$
- Split event into two 'mega jets'

 Exploit symmetry to approximate rest frame - '*R*-frame': '<u>Razor variables</u>'

•
$$M'_R = \sqrt{(j_{1,E} + j_{2,E})^2 - (j_{1,L} + j_{2,L})^2}$$

- E: Energy in R-frame
- L: Longitudinal momentum

OXFORD

SM backgrounds controlled with semi data-driven estimate

- Interpret results in a variety of models
- Here: $\tilde{g}\tilde{g}, \tilde{g}
 ightarrow qqW \tilde{\chi}_1^0$

- Soft lepton regions contribute to improved sensitivity in compressed regions
- Significant improvement over 2011 results

Monophoton, Overview

- arXiv: <u>1411.1559</u> [hep-ex], PRD 91, 012008 (2015)
- Compressed spectra (\tilde{q} and $\tilde{\chi}_1^0$ close in mass) \Rightarrow soft decay products, low $E_{\rm T}^{\rm miss}$

Monophoton, Overview

- arXiv: <u>1411.1559</u> [hep-ex], PRD 91, 012008 (2015)
- Compressed spectra (\tilde{q} and $\tilde{\chi}_1^0$ close in mass) \Rightarrow soft decay products, low $E_{\rm T}^{\rm miss}$
- ISR photon boosts system \Rightarrow higher $E_{\rm T}^{\rm miss}$

Monophoton, Overview

- arXiv: <u>1411.1559</u> [hep-ex], PRD 91, 012008 (2015)
- Compressed spectra (\tilde{q} and $\tilde{\chi}_1^0$ close in mass) \Rightarrow soft decay products, low $E_{\rm T}^{\rm miss}$
- ISR photon boosts system \Rightarrow higher $E_{\rm T}^{\rm miss}$

- ${\scriptstyle \bullet }$ Veto leptons and >1 jet
- Background $W\gamma$ (15%) and $Z\gamma$ (70%) normalized in lepton CRs

Monophoton, Results

Process	Event yield
$Z(\rightarrow \nu\nu) + \gamma$	$389\pm36\pm10$
$W(\rightarrow \ell \nu) + \gamma$	$82.5 \pm 5.3 \pm 3.4$
$W/Z + \text{jet}, t\bar{t}, \text{diboson}$	$83\pm2\pm28$
$Z(\to \ell\ell) + \gamma$	$2.0\pm0.2\pm0.6$
$\gamma + \text{jet}$	$0.4^{+0.3}_{-0.4}$
Total background	$557\pm36\pm27$
Data	521

Systematic uncertainties $\sim 15\%$

- CR statistics (6%)
- $e \rightarrow \gamma$ mis-ID (5%)

- Best exclusion along 'diagonal'
- Also sets limits for DM and more general models

- Inclusive \tilde{q} searches weaker if only one light \tilde{q} : $\sigma/8$
- In MSSM squarks can mix
 - ${\ensuremath{\, \bullet }}$ Weak flavour physics constraints on ${\ensuremath{\, t }} {\ensuremath{\, c }}$ mixing
- $\bullet\,$ Charm jet tagging gives improved sensitivity to \tilde{c}
- First dedicated search for scalar charm quark

- Inclusive \tilde{q} searches weaker if only one light \tilde{q} : $\sigma/8$
- In MSSM squarks can mix
 - $\bullet\,$ Weak flavour physics constraints on ${\tilde t}-{\tilde c}\,$ mixing
- $\bullet\,$ Charm jet tagging gives improved sensitivity to \tilde{c}
- First dedicated search for scalar charm quark

arXiv: <u>1501.01325</u> [hep-ex], accepted by PRL (this morning!)

Simplified model $ilde{c}
ightarrow c ilde{\chi}_1^0$

- 2 high- $p_{\rm T}$ c-jets
- High $E_{\mathrm{T}}^{\mathrm{miss}}$
- No leptons

Scalar charm, Charm tagging

- JetFitterCharm impact parameter and secondary vertex
- c-jets occupy middle ground between b-jets and light-jets
- Image from <u>here</u>

Scalar charm, Charm tagging II

2-variable cut on P_c , P_b , P_{light} , <u>ATL-PHYS-PUB-2015-001</u>, <u>more information</u>

Scalar charm, Charm tagging II

2-variable cut on P_c, P_b, P_{light}, <u>ATL-PHYS-PUB-2015-001</u>, more information

Will Kalderon, Oxford University

Scalar charm, Results

Will Kalderon, Oxford University

Run I:

- Diverse and comprehensive range of SUSY searches for squarks and gluinos
- 'Gaps' left by more general searches systematically filled
 - Here: $1/2 \ \ell + \text{jets} + E_{\text{T}}^{\text{miss}}$, monophoton, scalar charm

Run II:

- Preparation in earnest, big increase in production cross-sections at 13 TeV
- First results will be for inclusive searches
 - Less sensitive to larger systematics of early data
 - $\bullet~\mbox{Probing highest masses} \Rightarrow \mbox{biggest cross-section boost} \Rightarrow \mbox{fastest gains}$
- Let's hope for a discovery this time next year!

BONUS SLIDES

Will Kalderon, Oxford University

14 / 13

ATLAS SUSY

ATLAS Preliminary

 $\sqrt{s} = 7.8 \text{ TeV}$

Full details at ATLAS SUSY public results page

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \xi_1^0 \\ \bar{q}\bar{q}r, \bar{q} \rightarrow q \xi_1^0 \\ (\text{compressed}) \\ \bar{g}\bar{x}, \bar{x} \rightarrow q \xi_1^0 \\ \bar{x}\bar{x}, \bar{x} \rightarrow q \xi_1^0 \\ \bar{x}\bar{x}, \bar{x} \rightarrow q \xi_1^0 \\ \bar{x}\bar{x}, \bar{x} \rightarrow q \xi_1^0 \\ (\text{MSB} (I, \text{MSP}) \\ \text{GGM} (Ni, \text{SP}) \\ \text{GGM} (vino \text{NLSP}) \\ \text{GGM} (vino \text{NLSP} (vino \text{SP}) \\ \text{GGM} (vino \text{SP} (vino \text{SP}) \\ \text{GGM} (vino \text{SP} (vino \text{SP} (vino \text{SP}) \\$	$\begin{array}{c} 0 \\ 0 \\ 1 \gamma \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 \tau + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (2) \end{array}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-2 jets -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20.3 20.3 20.3	4.1 1.7 TeV m(j)-m(j) 5.250 GeV m(j)-m(2 ^m ga, i)-m(2 ^m ga, i) 5.250 GeV m(j)-GeV m(j)-GeV m(j)-GeV m(j) 5.217 EV m(j)-GeV	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2014-167
3 rd gen. <u>§</u> med.	$\begin{array}{c} \text{Gravitio LSP} \\ \bar{g} \rightarrow b \bar{b} \bar{k}_{1}^{0} \\ \bar{g} \rightarrow \bar{t} \bar{k}_{1}^{0} \\ \bar{g} \rightarrow \bar{t} \bar{k}_{1}^{0} \\ \bar{g} \rightarrow b \bar{t} \bar{k}_{1}^{1} \end{array}$	0 0 0-1 e, µ 0-1 c, µ	mono-jet 3 b 7-10 jets 3 b 3 b 3 b	Yes Yes Yes Yes Yes	20.3 20.1 20.3 20.1 20.1 20.1	p ¹² costs 865 GeV m(c)>1.5 × 10 ⁴ eV m(t)=15 TeV 2 1.25 TeV m(c) ² /1,400 GeV 2 1.31 TeV m(c)/1,400 GeV 2 1.34 TeV m(c)/1,400 GeV 2 1.34 TeV m(c)/1,400 GeV	1502.01518 1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$\begin{array}{l} b_1 b_1, b_1 \rightarrow b \tilde{\chi}_1^0 \\ b_1 b_1, b_1 \rightarrow \delta \tilde{\chi}_1^+ \\ \bar{\eta}_1 \tilde{\eta}_1, \bar{\eta}_1 \rightarrow b \tilde{\chi}_1^+ \\ \bar{\eta}_1 \tilde{\eta}_1, \bar{\eta}_1 \rightarrow b \tilde{\chi}_1^0 \\ \bar{\eta}_1 \tilde{\eta}_1, \bar{\eta}_1 \rightarrow \delta \tilde{\chi}_1^0 \\ \bar{\eta}_1 \tilde{\eta}_1, \bar{\eta}_1 \rightarrow \delta \tilde{\chi}_1^0 \\ \bar{\eta}_1 \tilde{\eta}_1, \bar{\eta}_1 \rightarrow \delta \tilde{\chi}_1^0 \\ \bar{\eta}_1 \tilde{\eta}_1 (n 1 n 2 n 2 n 2 n 2 n 2 n 2 n 2 n 2 n 2 $	0 $2 e, \mu$ (SS) $1-2 e, \mu$ $2 e, \mu$ $0-1 e, \mu$ $2 e, \mu$ (Z) $3 e, \mu$ (Z)	2 b 0-3 b 1-2 b 0-2 jets 1-2 b nono-jet/c-1 1 b 1 b	Yes Yes Yes Yes tag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3	δ. 100-250 GeV m(ζ ²), 490 GeV δ. 125-840 GeV m(ζ ²), 2-2m(ζ ²), δ. m(ζ ²), 2-2m(ζ ²), 4, m(ζ ²), 2-2m(ζ ²), 4, <td>1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406,1122 1407.0608 1403.5222 1403.5222</td>	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406,1122 1407.0608 1403.5222 1403.5222
Other	Scalar charm, $\bar{c} \rightarrow c \bar{\chi}_1^0$ $\sqrt{s} = 7 \text{ TeV}$ full data	0 $\sqrt{s} = 8$ TeV partial data	2c $\sqrt{s} =$ full	Yes 8 TeV data	20.3 10	ک 480 GeV (۳۵۲) -۱ 1 Mass scale [TeV]	1501.01325

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS SUSY

ATLAS Preliminary

 $\sqrt{s} = 7.8 \text{ TeV}$

Full details at ATLAS SUSY public results page

 $1/2 \ \ell$ + jets + $E_{\rm T}^{\rm miss}$, monophoton, <u>scalar charm</u>

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	Mass limit		Reference
	MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$	0	2-6 jets 2-6 jets	Yes Yes	20.3 20.3	4. ž 1.7 Te		1405.7875 1405.7875
Se	$\bar{q}\bar{q}\gamma, \bar{q} \rightarrow q\tilde{\chi}_{1}^{0}$ (compressed)	1γ	0-1 jet	Yes	20.3	9 250 GeV	$m(\tilde{q})-m(\tilde{\chi}_1^0) = m(c)$	1411.1559
-Ř	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	20.3	ž 1.33 TeV	m({t_1^0})=0 GeV	1405.7875
au	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$	1 e,µ	3-6 jets	Yes	20	ž 1.2 TeV	$m(\tilde{\chi}_{1}^{0}) < 300 \text{ GeV}, m(\tilde{\chi}^{+}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$	1501.03555
S	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_{1}^{0}$	2 e, µ	0-3 jets		20	ž 1.32 TeV	m($\hat{\chi}_{1}^{0}$)=0 GeV	1501.03555
9	GMSB (<i>t</i> NLSP)	1-2 T + 0-1 l	0-2 jets	Yes	20.3	ž 1.6 TeV	tanβ >20	1407.0603
is i	GGM (bino NLSP)	2γ	-	Yes	20.3	ž 1.28 TeV	m(k ⁰ ₁)>50 GeV	ATLAS-CONF-2014-001
S.	GGM (wino NLSP)	1 e, μ + γ	-	Yes	4.8	ž 619 GeV	m(k ⁰ ₁)>50 GeV	ATLAS-CONF-2012-144
5	GGM (higgsino-bino NLSP)	γ	1 <i>b</i>	Yes	4.8	ž 900 GeV	m({t1})>220 GeV	1211.1167
	GGM (higgsino NLSP)	2 e, µ (Z)	0-3 jets	Yes	5.8	ž 690 GeV	m(NLSP)>200 GeV	ATLAS-CONF-2012-152
	Gravitino LSP	0	mono-jet	t Yes	20.3	F ^{1/2} scale 865 GeV	$m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{q}) = 1.5 \text{ TeV}$	1502.01518
d	$\tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0}$	0	3 b	Yes	20.1	ž 1.25 TeV	m({{z}_{1}^{0}})<400 GeV	1407.0600
28	$\bar{g} \rightarrow t \bar{t} \bar{\chi}_1^0$	0	7-10 jets	Yes	20.3	ž 1.1 TeV	m($\hat{\chi}_1^0$) <350 GeV	1308.1841
Ξ°°Ę	$\bar{g} \rightarrow t \bar{t} \chi_1^0$	0-1 e, µ	3 b	Yes	20.1	ž 1.34 TeV	m($\hat{\ell}_1^0$)<400 GeV	1407.0600
ico 100	$\tilde{g} \rightarrow b \tilde{\iota} \tilde{\chi}_{1}^{+}$	0-1 e, µ	3 b	Yes	20.1	ž 1.3 TeV	m({21/1})<300 GeV	1407.0600
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$	0	2 b	Yes	20.1	b ₁ 100-620 GeV	m({\vec{k}_{1}^{0}})<90 GeV	1308.2631
žē	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$	2 e, µ (SS)	0-3 b	Yes	20.3	δ ₁ 275-440 GeV	$m(\tilde{\chi}_{1}^{*})=2 m(\tilde{\chi}_{1}^{0})$	1404.2500
2 2	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$	1-2 e, µ	1-2 b	Yes	4.7	ži 110-167 GeV 230-460 GeV	$m(\hat{\chi}_{1}^{n}) = 2m(\hat{\chi}_{1}^{0}), m(\hat{\chi}_{1}^{0})=55 \text{ GeV}$	1209.2102, 1407.0583
SB	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$	2 e, µ	0-2 jets	Yes	20.3	<i>ī</i> ₁ 90-191 GeV 215-530 GeV	m(\hat{x}_{1}^{0})=1 GeV	1403.4853, 1412.4742
εà	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 e, µ	1-2 b	Yes	20	Ĩ1 210-640 GeV	m(\hat{x}_{1}^{0})=1 GeV	1407.0583,1406.1122
SC B	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$	0 m	iono-jet/c-l	tag Yes	20.3	<i>i</i> ₁ 90-240 GeV	m(r ₁)-m(t ⁰ ₁)<85 GeV	1407.0608
2.4	<i>ī</i> ₁ <i>ī</i> ₁ (natural GMSB)	2 e, µ (Z)	1 b	Yes	20.3	<i>i</i> ₁ 150-580 GeV	m(x ⁰ ₁)>150 GeV	1403.5222
e, 0	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ (Z)	1 b	Yes	20.3	Ĩ2 290-600 GeV	m({\$\vec{k}_1^0})<200 GeV	1403.5222
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 490 GeV	m(x ⁰ ₁)<200 GeV	1501.01325
	$\sqrt{s} = 7 \text{ TeV}$ full data	\sqrt{s} = 8 TeV partial data	$\sqrt{s} = full$	8 TeV data	1	-1 1	Mass scale [TeV]	J

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

Squarks and gluinos

- SUSY has 12 \tilde{q} two for each SM quark
- Usually treat 3rd generation separately, i.e. $m_{\tilde{t}_{1,2}}, m_{\tilde{b}_{1,2}}, m_{\tilde{q}}: q = u, d, s, c$
- 'Traditional' squark and gluino searches: \tilde{g} and first two generation \tilde{q}
- Highest cross sections for SUSY production at a *pp* machine
- Signatures: $\tilde{g} \rightarrow \tilde{q}q \rightarrow q \tilde{\chi}_1^0 q$: high $E_{\mathrm{T}}^{\mathrm{miss}}$, jets, (leptons)

$1/2~\ell+{ m jets}+{\it E}_{ m T}^{ m miss}$, Signal models

Will Kalderon, Oxford University

More details on public page

Model	Soft		Hard	
	single-lepton	dimuon	single-lepton	dilepton
mSUGRA/CMSSM			\checkmark	
bRPV mSUGRA/CMSSM			\checkmark	
nGM			\checkmark	
NUHMG			\checkmark	
mUED		\checkmark		√
$\tilde{g}\tilde{g}$ production, $\tilde{g} \to tc\tilde{\chi}_1^0$			\checkmark	
$\tilde{g}\tilde{g}$ production, $\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$			\checkmark	
$\tilde{g}\tilde{g}$ production, $\tilde{g} \to qqW\tilde{\chi}_1^0$	\checkmark		\checkmark	
$\tilde{q}\tilde{q}$ production, $\tilde{q} \to qW\tilde{\chi}_1^0$	\checkmark		\checkmark	
$\tilde{g}\tilde{g}$ production, $\tilde{g} \to qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^0$			\checkmark	\checkmark
$\tilde{q}\tilde{q}$ production, $\tilde{q} \to q(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^0$				\checkmark
$\tilde{g}\tilde{g}$ production, $\tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$			\checkmark	

R-frame calculation details here

Razor variables:

$$\begin{split} M_{R}' &= \sqrt{(j_{1,E} + j_{2,E})^{2} - (j_{1,L} + j_{2,L})^{2}} \\ M_{T}^{R} &= \sqrt{\frac{|\boldsymbol{p}_{T}^{\text{miss}}|(|\vec{j}_{1,T}| + |\vec{j}_{2,T}|) - \boldsymbol{p}_{T}^{\text{miss}} \cdot (\vec{j}_{1,T} + \vec{j}_{2,T})}{2}} \\ R &= \frac{M_{T}^{R}}{M_{R}'} \end{split}$$

Will Kalderon, Oxford University

ATLAS $1/2 \ell$ + jets + $E_{\mathrm{T}}^{\mathrm{miss}}$, Other exclusion P OXFORD

Full set of exclusion plots on public page; here: \tilde{q} - $\tilde{\chi}_1^0$ plane

 $m_{\tilde{q}} =$ 200 GeV, $m_{\tilde{\chi}^0_1} =$ 195 GeV; 10,000 events generated; more details on public page

Nominal	9989
Pre-selected:	
1. Trigger	8582
2. Good vertex	8574
3. Cleaning cuts	8213
SR Cuts:	
1. $E_{\rm T}^{\rm miss} > 150 { m ~GeV}$	4131
2. At least one loose photon with $p_{\rm T} > 125 \text{ GeV}(\eta < 2.37)$	2645
3. The leading photon is tight with $ \eta < 1.37$	2068
4. The leading photon is isolated	1898
5. $\Delta \phi(\gamma^{\text{leading}}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}) > 0.4$	1887
6. Jet veto: $N_{\rm jet} \leq 1$ and $\Delta \phi({\rm jet}, \boldsymbol{E}_{\rm T}^{\rm miss}) > 0.4$	1219
7. Lepton veto	1188

Limits for multiple generic higher-dimensional operators

Plots and tables on public page

- Use $E_{\mathrm{T}}^{\mathrm{miss}}$ trigger, 20.3fb⁻¹
 - Leading jet $p_{\rm T} > 130 {\rm GeV}$, $E_{\rm T}^{\rm miss} > 150 {\rm GeV}$
- Event Cleaning
- Lepton veto
- Leading two jets *c*-tagged
- Jet 2 $p_{\rm T} > 100 {
 m GeV}$
- $m_{\rm CC}>200{
 m GeV}$
- Three SR:

 $m_{\rm CT} > \{150, 200, 250\}$ GeV

 $Z + \text{jets} \approx 50\%$ $W + \text{jets} \approx 25\%$ $t\bar{t}$ or single $t \approx 25\%$

All control regions: c-tag leading two jets, use single-lepton triggers, relax some cuts for statistics

CRW: Single lepton, 40 GeV $< m_{\rm T} < 100$ GeV CRZ: OSSF leptons, $|m_{\ell\ell} - 90$ GeV| < 15 GeV CRT: One *e*, one μ CRQCD: Jet smearing method, $\Delta \phi_{\rm min}(\mathbf{p}_{\rm T}^{\rm miss}, 3 \text{ jets}) < 0.4$

Cut	Description	Signal regions		Control regions					
		SRs	CRZ CRT		CRW				
1	Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss}$ Single lepton						
2	Event cleaning	Common to all SR and CR							
3	Lepton selection	—	2 SF OS	2 DF OS	1				
Ŭ	Lepton selection	No further	No further e/μ (after overlap removal) with $p_{\rm T} > 7(6)$ GeV for $e(\mu)$.						
4	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV	—	— > 50 GeV					
	$\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ + $\vec{p}_{T}^{\mathrm{2leptons}}$	ptons — > 100 GeV —		—	—				
5	Leading jet $p_{\rm T}$	> 130 GeV	> 50 GeV	> 130 GeV					
6	Second jet $p_{\rm T}$	> 100 GeV	> 100 GeV > 50 GeV						
7	c-tagging	leading 2 jets ($p_{\rm T} > 50$ GeV, $ \eta < 2.5$)							
8	$\Delta \phi_{ m min}(ec{p}_{ m T}^{ m miss}$, 3 jets)	> 0.4	_						
9	$E_{\mathrm{T}}^{\mathrm{miss}}/(E_{\mathrm{T}}^{\mathrm{miss}}+p_{\mathrm{T}}^{\mathrm{2jets}})$	> 0.25	_						
10	Leading lepton p_T	—	> 70 GeV	> 25 GeV	> 50 GeV				
11	m_{ll}	—	$90 \pm 15 { m ~GeV}$	—					
12	m_T		— 40 – 100 G						
13	m _{cc}	> 200 GeV	-						
14	$m_{ m CT}$	> 150, 200, 250 GeV	0 GeV — — > 150 GeV						

Will Kalderon, Oxford University

Scalar charm, Event display

Will Kalderon, Oxford University

26 / 13

Public note at ATL-PHYS-PUB-2015-001

Algorithm	Variable Name	Description			
	acat	p_T category of jet, divisions [GeV]:			
Kinematic	PT	$15, 25, 35, 50, 80, 120, 200, \infty$			
Rinematic	mcat	η category of jet, divisions:			
	4	0, 0.7, 1.5, 2.5			
IP3D	$\log(\mathcal{L}_b/\mathcal{L}_{light})$	log ratio between b-jet and light-jet likelihood value			
	n_{trk}^{SV1}	Number of tracks matched to the vertex			
SV1	n _{2t}	Number of two-track vertices found in the jet			
511	m_{vx}	Secondary vertex mass			
	L/σ_L	Secondary vertex flight-length significance			
	m_{chain}	Invariant mass of decay products			
	S_d^{JF}	Total vertex flight-length significance			
	$n_{\rm vx}$	Number of reconstructed vertices with ≥ 2 tracks			
	n_{trk}^{JF}	Number of tracks matched to vertices with ≥ 2 tracks			
IntFitton	n _{1t}	Number of single-track vertices			
Jetritter	L^1_{xy}	Transverse displacement of the secondary vertex			
	L_{xy}^{2}	Transverse displacement of the tertiary vertex			
	$\min \varphi_{trk}$	Minimum track rapidity along jet axis			
	$\langle \varphi_{trk} \rangle$	Mean track rapidity along jet axis			
	$\max \varphi_{trk}$	Maximum track rapidity along jet axis			
SV1, JetFitter	F / F	Ratio of the vertex track energy sum			
(variables input from both)	L _{vx} /L _{jet}	to the jet track energy sum			

Summary of the variables used by the JetFitterCharm neural network. JetFitterCharm uses a 'charm tuned' variant of the standard JetFitter used by other ATLAS tagging algorithms. The charm tuned JetFitter also adds the variables L_{xy}^1 , L_{xy}^2 , and φ_{trk} . Note that φ_{trk} is the track rapidity computed with respect to the jet axis.

Will Kalderon, Oxford University

	Con	trol Reg	ions	Signal Regions, $m_{\rm CT}$ [GeV]			
	CRT	CRZ	CRW	> 150	>200	$>\!250$	
Top	129 ± 11	7.3 ± 0.8	45 ± 7	7.4 ± 2.7	3.9 ± 1.6	1.6 ± 0.7	
iop	(124)	(7.1)	(44)	(7.1)	(3.7)	(1.5)	
Z⊥iote	0.1 ± 0.0	47 ± 7	0.1 ± 0.1	14 ± 3	7.7 ± 1.7	4.3 ± 1.2	
⊿ – jeta	(0.1)	(43)	(0.1)	(13)	(7.0)	(3.9)	
$W \perp iote$	< 0.1	< 0.1	15 ± 9	7.2 ± 4.5	4.1 ± 2.6	1.9 ± 1.2	
w ⊤jeta	(< 0.1)	(< 0.1)	(16)	(7.4)	(4.2)	(1.9)	
Multijets	—	_	-	0.3 ± 0.3	0.2 ± 0.2	0.05 ± 0.05	
Others	0.1 ± 0.1	1.4 ± 0.8	1.3 ± 0.8	0.5 ± 0.3	0.4 ± 0.3	0.4 ± 0.3	
Total	129 ± 11	56 ± 7	62 ± 7	30 ± 6	16 ± 3	$\boldsymbol{8.2 \pm 1.9}$	
Data	129	56	62	19	11	4	

- Using lowest expected CL_s for three m_{CT} regions and $\tilde{t} \rightarrow c \tilde{\chi}_1^0$ c-tagged regions
- Observed band: č xsec varied down / up

• Excludes \tilde{c} from $m_{\tilde{c}}=m_{\tilde{\chi}_1^0}$ to $m_{\tilde{c}}=$ 490 GeV and $m_{\tilde{\chi}_1^0}<$ 200 GeV