



#### Search for stealth supersymmetry in events with leptons or photons, jets and low missing transverse energy

#### Lake Louise, February 17, 2015

#### arXiv: <u>1411.7255</u> SUS-14-009 public <u>twiki</u>



Ben Carlson, On behalf of the CMS Collaboration

bcarlson@cern.ch

# Where is supersymmetry hiding?



- Many searches rely on MET from undetected LSP ( $\tilde{\chi}^0$ )
- These searches exclude first and second generation squark masses up to 1 TeV
- Need complementary low MET searches motivated by:
  - Compressed spectra, Rparity violating decay, stealth SUSY



### Stealth mechanism



- Assume usual SUSY
  breaking sector with some mediation to MSSM
- Introduce hidden sector  $\widetilde{S}$ , S
  - No coupling to SUSY breaking sector
  - SUSY approximately conserved, enforcing mass degeneracy
  - $\delta M = M(\tilde{S})-M(s)$  small





# Stealth SUSY



 Low MET signature generated naturally from small δM, required by the fact that SUSY is conserved in the stealth sector
 Physics

#### Stealth SUSY signature



- Signature: 6 jets and WW ( $\gamma\gamma$ )
- Analysis targets **general set** of final states with photons or leptons, jets and **no MET** requirement
- Current search strategies are insensitive to this model





#### Analysis overview

Search separately for WW ( $\gamma\gamma$ ) decays Use selections:

- **Electron & muon (eµ)** 
  - Dominant background: ttbar •
  - Selection designed to reduce • QCD, W+jets, and DY
- Two photons  $(\gamma\gamma)$ 
  - Dominant background: QCD
  - Low cross section from QCD with  $\gamma\gamma$







## Selections and trigger

#### eμ

- Isolated muon trigger
- Offline selections:
  - Muon  $p_T > 30 \text{ GeV}$
  - Electron  $p_T > 15 \text{ GeV}$
  - Jet  $p_T > 30 \text{ GeV}$
  - 0 b-tagged\* jets

\*combined secondary vertex, BTV-13-001

#### γγ

- Isolated **diphoton** trigger
- Offline selection
  - $p_T(\gamma) > 40 (25) \text{ GeV}$
  - Jet  $p_T > 30 \text{ GeV}$





# Top background estimation for eµ

Strategy: apply normalization and N<sub>jets</sub> shape corrections to MC samples (MadGraph + Pythia) derived from control samples



**Carnegie Mellon University** 

- Dominant SM background: ttbar
  - Shape from  $\geq 2$  b-tag
  - Normalization (0 b-tag) from 2-3 jet
  - Jet multiplicity well modeled by MC
  - Uncertainties from variation of renormalization/ factorization scales



# Background estimation for eµ analysis

- DY contributes to  $e\mu$  through  $Z \rightarrow \tau \tau$
- Estimate DY from dimuon mass < 130 GeV</li>
- Backgrounds with a nonprompt lepton: small

| Sample            | Leptons                          | $N_{\rm jets}$ | $N_{\mathrm{b-jets}}$ |
|-------------------|----------------------------------|----------------|-----------------------|
| Search            | $e^{\pm}, \mu^{\mp}$             | $\geq 4$       | 0                     |
| Top shape         | $\mathrm{e}^{\pm}$ , $\mu^{\mp}$ | $\geq 2$       | $\geq 2$              |
| Top normalization | $\mathrm{e}^{\pm}$ , $\mu^{\mp}$ | <4             | 0                     |
| Drell–Yan         | $\mu^{\pm},\mu^{\mp}$            | $\geq 2$       | 0                     |
| Non-Prompt        | $e^{\pm}$ , $\mu^{\pm}$          | $\geq 2$       | 0                     |

• Validate background estimation in 1 b-tag validation control sample





# Results 0 b-tag: signal region (eµ)



- Signal tends to produce events with many jets
- Three S<sub>T</sub> thresholds (300, 700, 1200 GeV) are optimal for all squark masses
- Dominant systematic uncertainty: statistical uncertainty on top shape control sample





### Stealth SUSY limits: WW

- Determine limits using frequentist-inspired CLs
- Combine exclusive jet multiplicity bins (4, 5, 6, ≥7)
- Use the S<sub>T</sub> threshold with best sensitivity



• Exclude squark masses ~550 GeV





# Background estimate $(\gamma\gamma)$

- $S_T$  invariance method:  $S_T$  shape independent of  $N_{jets}$
- Used to estimate QCD background



- Validated for:
  - inclusive QCD events (data & simulation)
  - data with  $1-\gamma$
  - simulation with  $\gamma\gamma$
- Obtain shape from fit to 3 jet sample, and normalize in S<sub>T</sub> sideband (1100-1200 GeV)



# Results $(\gamma\gamma)$



• Shape in 3 jet data fit to:  $1/x^{p_1 \ln S_T}$ , x = 8 TeV

**Carnegie Mellon University** 

- Functional form described  $1-\gamma$  data and  $\gamma\gamma$  simulation
- Systematic uncertainty dominated by normalization region statistical uncertainty
   Physics



# Stealth SUSY limits: γγ



- Combine 4, ≥5 jet bins and all S<sub>T</sub> bins in interpretation
- Exclude squark masses
  ~1050 GeV





### Summary

- Low-MET SUSY searches are an important complement to existing searches
  - We search in events that have either two leptons or two photons plus many jets
- Exclude squark masses below **550 GeV** for stealth decays with **leptons** and **1050 GeV** with **photons**
- Limits on squark masses for stealth models are comparable to those from models with MET
- Future direction: top squarks and Higgsino mediated top squark decays





### Backup





# Drell-Yan background

- Estimate DY background (~10%) with a data-driven procedure that accounts for signal contamination
- Fit the dimuon mass distribution (50-130 GeV) in μ<sup>+</sup>μ<sup>-</sup> control region
  - **DY** shape from MC
  - **Diboson** shape from MC
  - Use first order **polynomial** to describe **non-peaking components** (top, and potential signal)
  - Floating parameters: DY normalization ( $N_{DY}^{fit}$ ), polynomial slope and normalization
- Correct DY MC in search region using  $R=N_{DY}^{fit}/N_{DY}^{MC}$  for each  $N_{jets}$  bin





### Non-prompt lepton estimate

#### Signal produces OS dileptons

- Use same sign e,µ pairs to estimate contribution from nonprompt leptons
- Subtract background MC from SS data to estimate non-prompt contribution to OS signal region



• Cartoon of sample event with non-prompt leptons





# Signal efficiency

- Sample efficiency for 600 GeV squark
- The nominal branching fraction for  $W(W) \rightarrow e(\mu)$  is approximately 2%
- Most significant efficiency reduction comes from isolation

| Selection                                         | Efficiency [%]  |
|---------------------------------------------------|-----------------|
| $N_{\rm jets} \ge 4, S_{\rm T} \ge 300$           | $99.03\pm0.05$  |
| 1 loose $\mu$ , 1 loose electron, no isolation    | $1.70 \pm 0.06$ |
| 1 loose $\mu$ , 1 loose electron, loose isolation | $1.10 \pm 0.05$ |
| 1 tight $\mu$ , 1 tight electron, tight isolation | $0.96 \pm 0.05$ |
| Veto additional loose leptons                     | $0.96 \pm 0.05$ |
| 0 b-tagged jets                                   | $0.83 \pm 0.04$ |





#### No MET handle on stealth



- Mass splitting between  $\tilde{S}$  and S controls MET
- As mass splitting goes down, MET goes down

Stealth SUSY has a variety of signatures: jets, gauge bosons, but... no MET!





### S<sub>T</sub> invariance method: hadronic events



- Used in search for black holes to estimate QCD background in all hadronic events
- Also used to estimate QCD events with photons in SUSY search at 7 TeV (SUS-12-014)





# $S_T$ invariance with $\gamma$ or $\gamma\gamma$



 S<sub>T</sub> shapes do not depend on N<sub>jets</sub>





