

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

UNIVERSITY OF

Richard Haley

January 2024

Science and Technology Facilities Council

Engineering and Physical Sciences Research Council

INTRO

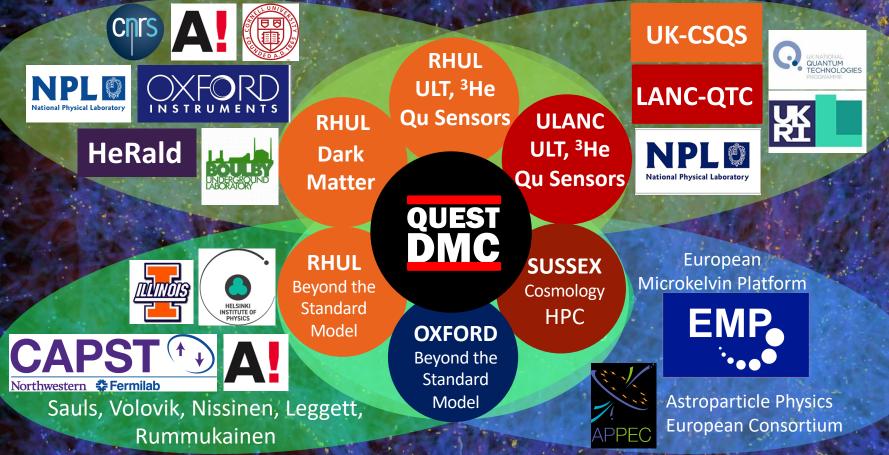
Collaboration funded through the joint UKRI STFC/EPSRC Quantum Technologies for Fundamental Physics programme.

- People and places
- Combining quantum sensors with superfluid ³He at ultralow temperatures
- WP1: Superfluid helium-3 dark matter detector
- WP2: Phase transitions in extreme matter

Implementing current quantum sensors in new 100µK ultralow temperature regime and co-designing new sensors for fundamental physics.

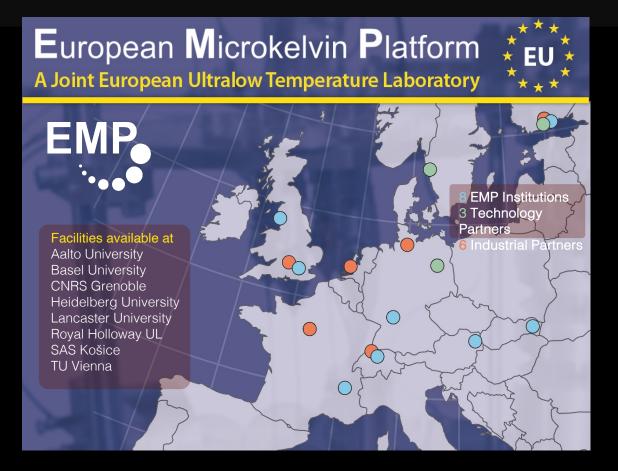
CORE TEAM

University


UNIVERSITY OF

QUEST DMC

EXPERIMENTAL	Tineke Salmon
Dr. Samuli Autti	Prof. John Saunders
Prof. Andrew Casey (PI)	Robert Smith
Nathan Eng	Dr. Michael Thompson
Dr. Paolo Franchini	Dr. Viktor Tsepelin
Prof. Richard Haley (PO & INNO)	Luke Whitehead
Dr. Petri Heikkinen	Dr. Vladislav Zavyalov
Dr. Sergey Kafanov	Dr. Dmitry Zmeev
Dr. Elizabeth Leason	THEORY
Dr. Elizabeth Leason Dr. Lev Levitin	Dr. Neda Darvishi
Dr. Lev Levitin	Dr. Neda Darvishi
Dr. Lev Levitin Prof. Jocelyn Monroe (WP1 lead)	Dr. Neda Darvishi Prof. Mark Hindmarsh (WP2 lead)
Dr. Lev Levitin Prof. Jocelyn Monroe (WP1 lead) Ashlea Kemp	Dr. Neda Darvishi Prof. Mark Hindmarsh (WP2 lead) Prof. Stephan Huber
Dr. Lev Levitin Prof. Jocelyn Monroe (WP1 lead) Ashlea Kemp Dr. Adam Mayer	Dr. Neda Darvishi Prof. Mark Hindmarsh (WP2 lead) Prof. Stephan Huber Prof. John March-Russell
Dr. Lev Levitin Prof. Jocelyn Monroe (WP1 lead) Ashlea Kemp Dr. Adam Mayer Dr. Theo Noble	Dr. Neda Darvishi Prof. Mark Hindmarsh (WP2 lead) Prof. Stephan Huber Prof. John March-Russell Dr. Stephen West


QUEST-DMC ECOSYSTEM

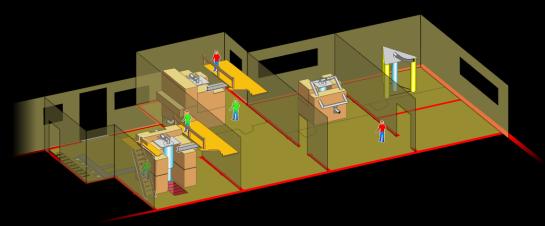
Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

QUEST

EMP

FACILITIES & CAPABILITIES

Cooling and measuring samples and sensors in the sub-mK regime by exploiting adiabatic nuclear demagnetisation.


FACILITIES & CAPABILITIES

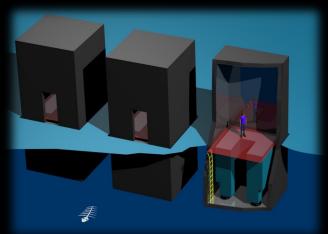
QUEST DMC

- 4 custom Lancaster-style wet dilution refrigerators with 100µK helium-3 copper demag stages
- 5 commercial dry fridges
- Cryogenics and low temperature skills training suite \bullet
- Ultra-pure helium-4 supplier
- Consultancy and collaborative R&D

FACILITIES & CAPABILITIES

In-house nanofabrication

Quantum Technology Centre



Superfab UK Centre for Superconducting and Hybrid Quantum Systems

QUEST

Ultra-isolated low noise environment for characterisation of quantum-enhanced devices.

QUEST-DMC PROJECTS

Work Package 1 Superfluid helium-3 dark matter detector

Develop and demonstrate a quantum-amplified superfluid ³*He calorimeter to search for sub-GeV dark matter.*

Lead: Jocelyn Monroe.

- Sub-mK superfluid helium-3 bolometers \circ
- NEMS
- State-of-the-art SQUID amplifiers •
- **Detector know-how** \circ

arXiv:2310.11304: QUEST-DMC superfluid ³He detector for sub-GeV dark matter

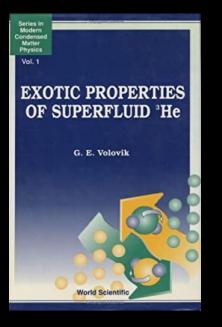
Work Package 2

Phase transitions in extreme matter

Investigate early universe phase transitions and analogue first-order nucleation in superfluid ³He.

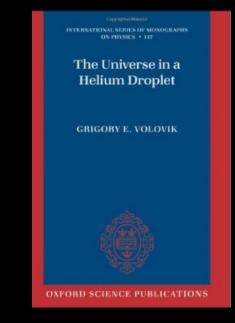
Lead: Mark Hindmarsh.

- Sub-mK helium-3 as a quantum simulator •
- HPC study of statics and dynamics •
- Experimental studies of nucleation problem
- Cosmological phase transition know-how •

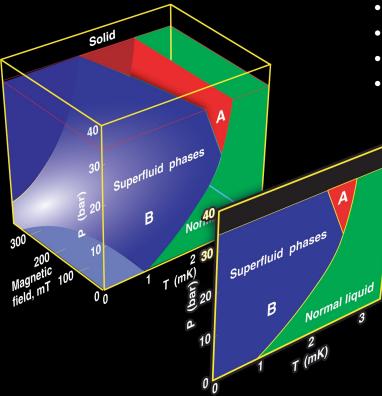

arXiv:2401.07878: A-B transition in superfluid ³He and cosmological phase transitions arXiv:2401.06079: Nanofluidic platform for studying the first-order phase transitions in superfluid helium-3

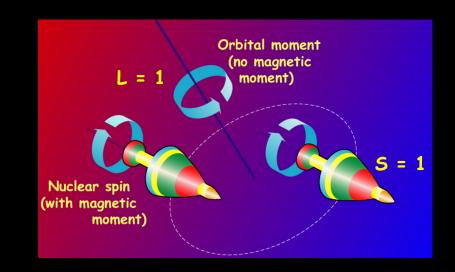
Linked through combining quantum sensors with superfluid ³He at ultralow temperatures

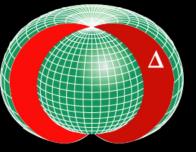
QUEST DMC



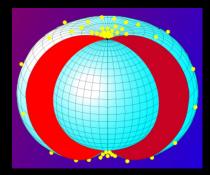
"The most complex system for which we already have the Theory of Everything"

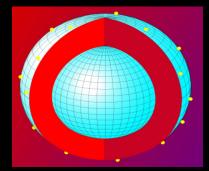

G.E. Volovik

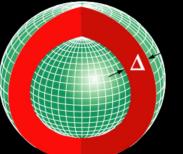



QUEST DMC

- BCS condensate p wave superfluid
- Cooper pairs with L=S=1
- 18 component order order parameter (L_z , $S_z = -1$, 0, 1)
- Coherence length ~50nm



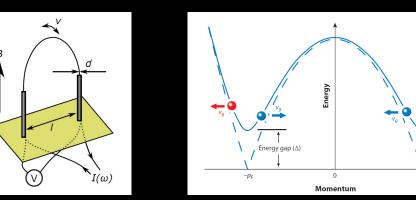

Energy gap/ Order parameter

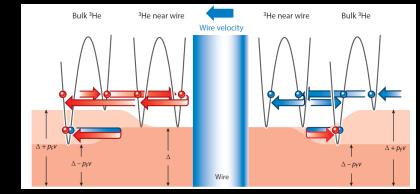

A-phase has only spin ☆↑ and spin ₩↓ pairs S_z=±1 Equal spin-paired Axial state Anisotropic Textures

Quasiparticles Broken Cooper pairs

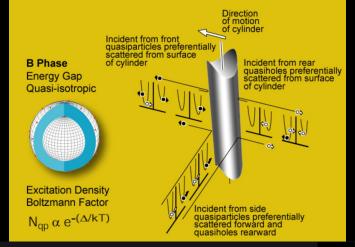
Energy $\Delta \sim 10^{-7} \text{ eV}$ Mean free path >> container size

B-phase has all three components; spin î↑î, spin ↓↓↓ and ↑↓, ↓↑ pairs "pseudo-isotropic"



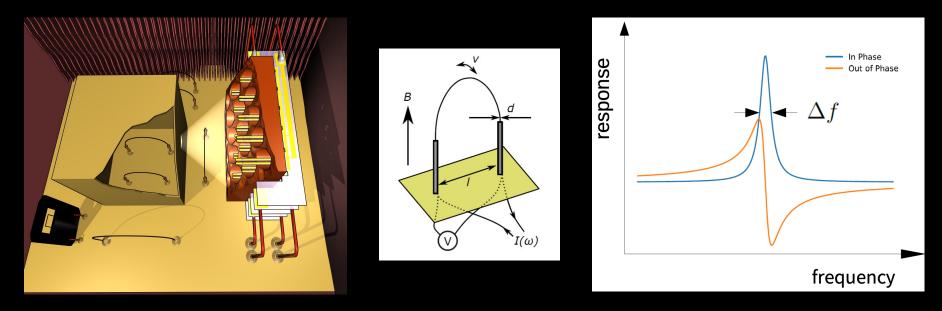

A:

B:



QUEST

- Probe damping of moving mechanical objects
- Fermionic dispersion curves canted by motion
- Quasiparticles (and holes) interact with objects and flow field
- Andreev scattering enhances quasiparticle damping
- Retroreflection reverses velocity but not momentum p_F


Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

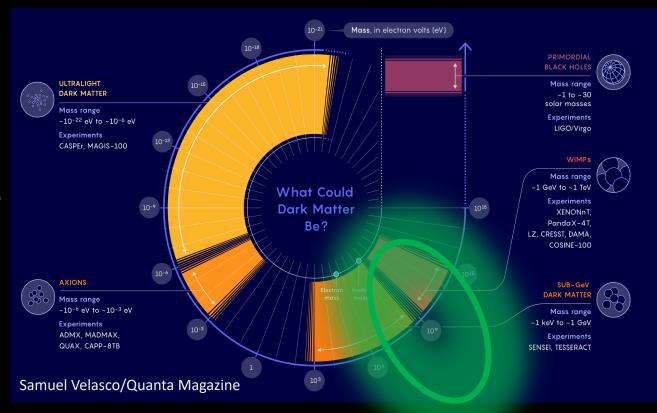
Dr

QUASIPARTICLE SENSING

QUEST DMC

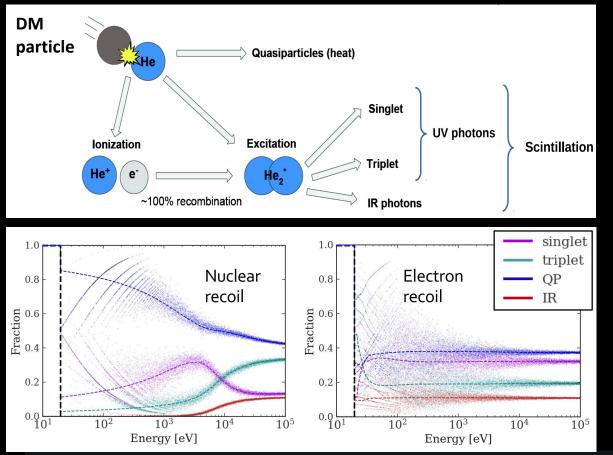
- Many types of probe
- Damping from resonance width or peak height
- Relate damping to Boltzmann quasiparticle density

WP1 DETECTOR CONCEPT


Sub-GeV/c² mass range:

- Widens the search
- Masses in nucleon range

Helium-3


- Light mass
- Spin

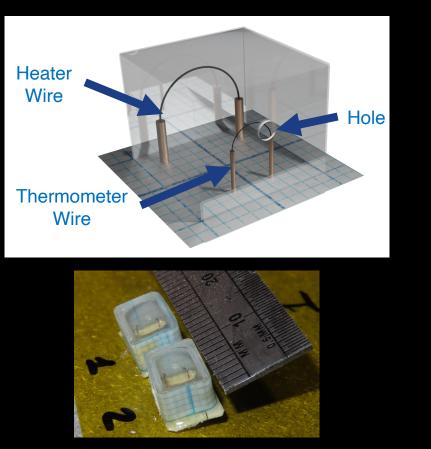
QUEST DMC

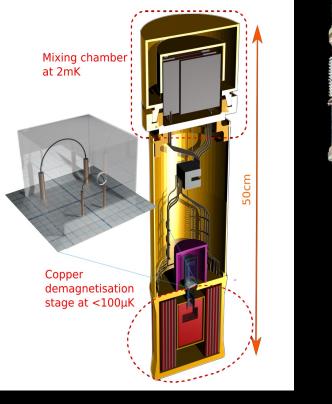
WP1 DETECTOR CONCEPT

Energy partition:

- Nuclear recoil
- Electron recoil

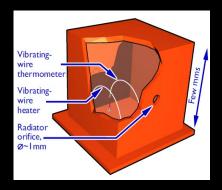
Detect:

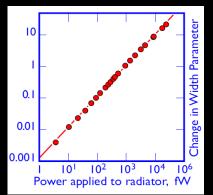

- Heat quasiparticles
- Scintillation photons (ionization threshold ~20 eV)


Target energy threshold <10eV

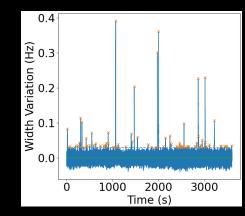
QUEST DMC

BOLOMETER & OPERATION

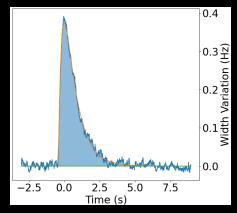




BOLOMETER & OPERATION

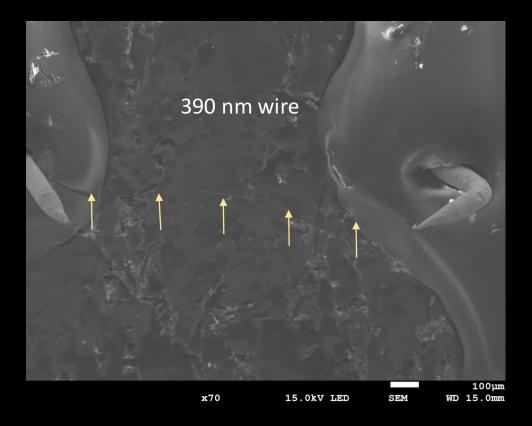


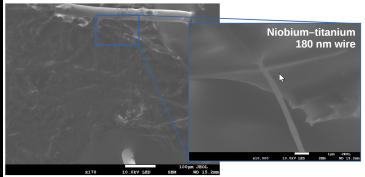
Bolometer cut-away. Damping width calibration.

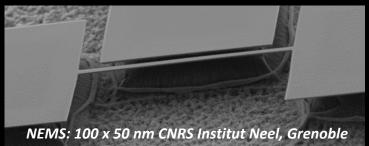


QUEST

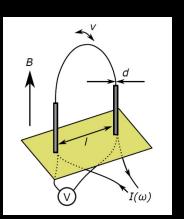
- Direct sensing of quasiparticles (no Kapitza)
- Heater and thermometer wires for calibration
- Radiator hole and wire ringdown determine time constants
- Optimise wire size and readout to lower energy threshold



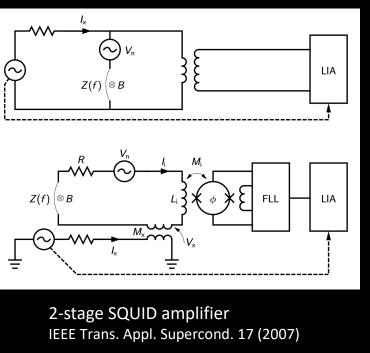

Typical signal trace, peak detection and fitting.

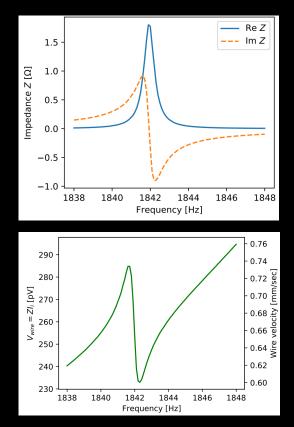


Wire/beam size and geometry

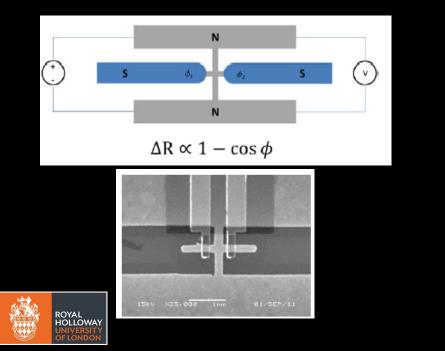


quest DMC

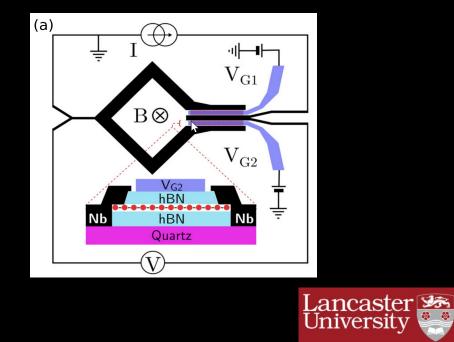



SQUID readout

Replace conventional readout with SQUID (or other alternative)



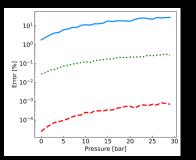
SQUID alternatives


HyQUID: Hybrid Quantum Interference Device

Based on Andreev interferometer with two SN contacts Petrashov *et al,* Phys Rev Lett 74, 5268 (1995)

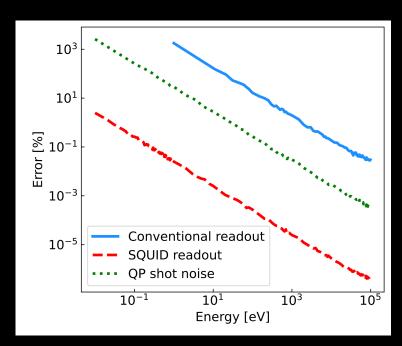
G-SQUID: Graphene-based tunable SQUIDs

Based on controlling ballistic Josephson junctions Thompson *et al*, Appl Phys Lett 110, 162602 (2017)



OPTIMISING SENSITIVITY – simulated responses

Tune wire diameter at 0.12 $T_{\rm c}$ for 10 eV

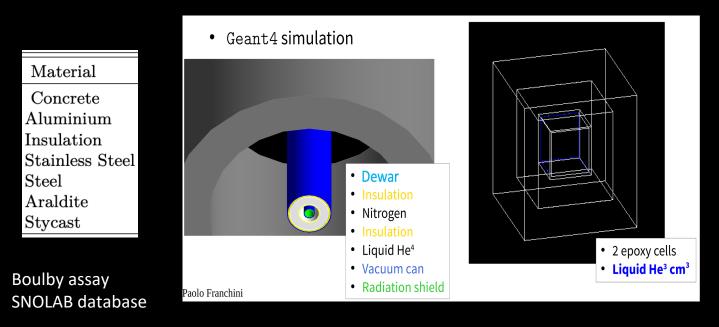


Tune pressure at 0.12 T_c for 10 eV

Tune temperature for 10eV 10² 10^{0} [%] 10⁻² 10^{-4} 10^{-6} 0.10 0.12 0.14 0.16 T/T_c

Importance of cold operation

Operation at 0.12 $\rm T_{\rm c}$


- SQUID readout required
- Shot noise problem?

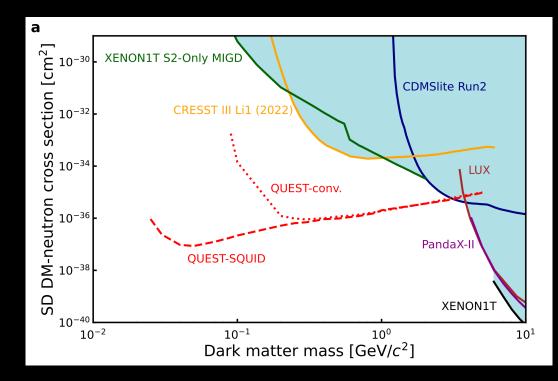
BACKGROUNDS

Leason et al, QUEST-DMC: Background Modelling and Resulting Heat Deposit for a Superfluid Helium-3 Bolometer (to be published 2024)

- Materials choices?
- Shielding?
- Underground?

IONISATION CHANNEL

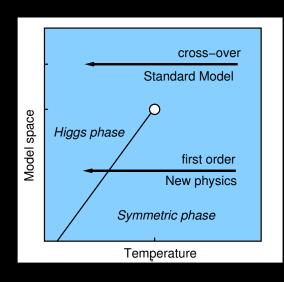
- SiPMs (developed for Darkside) normally operated at LN2
- Matrix of single photon avalanche diodes with high gain and single photo-electron resolution
- First use as Veto rather than measure energy partition fraction
- Tested at 4K


QUEST

SENSITIVITY

QUEST DMC Spin-dependent sensitivity projection for:

- 5 x 0.3 cm³ bolometers
- 6 month run at 50% duty cycle


See: ArXiv:2310.11304, QUEST-DMC superfluid ³He detector for sub-GeV dark matter

WP2 PHASE TRANSITIONS CONCEPT

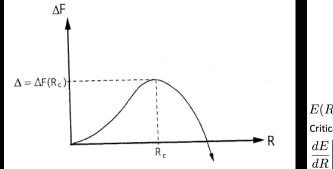
Motivations

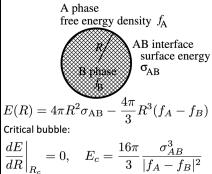
- Early-Universe first-order phase transitions and associated gravitational wave generation
- The AB nucleation puzzle

Methods

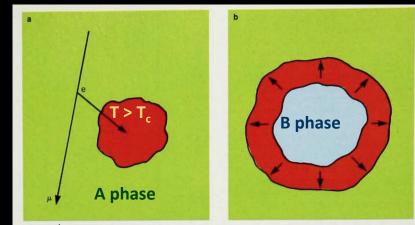
- Apply cosmology computation methods to simulate ³He phase transitions
- Use ³He as a quantum analogue to test nucleation theory and out-of-equilibrium dynamics

QUEST DMC

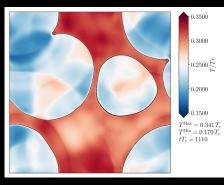



WP2 PHASE TRANSITIONS CONCEPT

The nucleation problem in ³He

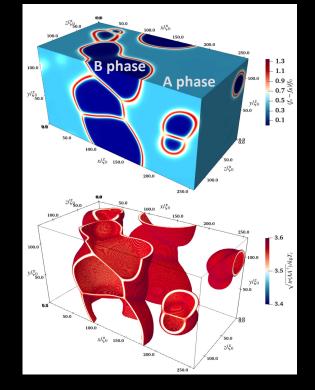

- Homogeneous nucleation theory predicts VERY slow transition rates (lifetime of Universe).
- But the transition does happen.
 (eg: Kleinberg et al 1974; Hakonen et al 1985; Fukuyama et al 1987; Swift, Buchanan 1987; Schiffer et al 1992; O'Keefe, Barker, Osheroff 1996 Bartkowiak et al 2000; Zhelev et al 2017; Tian et al 2023)
- Many models but none consistent with all experimental observations (eg: Leggett 1984, Bunkov & Timofeevskaya 1998; Leggett & Yip 1990; Balibar, Mizusaki, Sasaki 2000; Hong 1988; Tye & Wohns 2011)
- Extrinsic vs intrinsic mechanisms?

QUEST



Incident radiation and "Baked Alaska"?

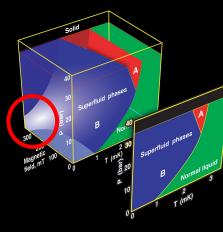
SIMULATION APPROACH

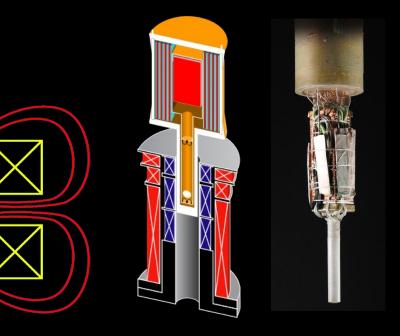


Numerical simulation of cosmological phase transition (Cutting, Hindmarsh, Weir 2019)

QUEST DMC Perform simulations using time-dependent Ginzburg-Landau on large grids

- 3x3 complex superfluid ³He order parameter
- Implement boundary conditions (or none)
- Compute phase transition dynamics

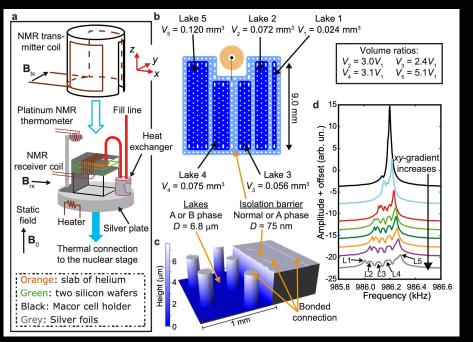

Hindmarsh *et al*, arXiv:2401.07878: *A-B transition in superfluid* ³*He and cosmological phase transitions*

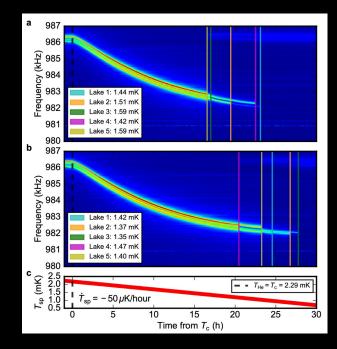

EXPERIMENTAL APPROACH 1

Eliminate boundary effects

- Exploit magnetic field
 dependence of phase boundary
- Control transition with shaped magnetic fields
- Remove influence of physical walls

Haley *et* al: AIP Conf. Proc (2006) A levitated droplet of superfluid He-3-B entirely surrounded by He-3-A.




EXPERIMENTAL APPROACH 2

Control and investigate boundary effects

- Transition under confinement with atomically smooth walls
- Probe dynamics with microcoils & SQUID-NMR

Heikkinen et al: arXiv:2401.06079 Nanofluidic platform for studying the first-order phase transitions in superfluid helium-3

QUEST

SUMMARY

Work Package 1

Superfluid helium-3 dark matter detector

Develop and demonstrate a quantum-amplified superfluid ³He calorimeter to search for sub-GeV dark matter.

- Quantum-amplified sub-mK superfluid helium-3 calorimeter developed
- Sensitive to spin-dependent detection with predicted 10eV threshold
- First measurement run Spring 2024

Future

QUEST DMC

- Exploit more sensitive amplifier technology
- Multiplexing?
- Low radiogenic background cryostats?
- Underground?

arXiv:2310.11304: QUEST-DMC superfluid ³He detector for sub-GeV dark matter

Work Package 2

Phase transitions in extreme matter

Investigate early universe phase transitions and analogue first-order nucleation in superfluid ³He.

- Simulations producing new insight into dynamics of the AB transition
- Smooth-walled nanofluidic cell collecting data on supercooling (and superheating)
- Magnetic control system under construction

Future

- Run of 3D bubble cell
- Simulate existing nucleation scenarios
- Understand influence of cosmic rays and radiogenics

arXiv:2401.07878: A-B transition in superfluid ³He and cosmological phase transitions arXiv:2401.06079: Nanofluidic platform for studying the first-order phase transitions in superfluid helium-3

UNIVERSITY OF

Thank you!

SNGLAB

Science and Technology Facilities Council

Engineering and Physical Sciences Research Council