Fermion masses, leptogenesis and gravitational waves in SO(10)

Luca Marsili (IPPP, University of Durham)

Based on the work with S. Pascoli, J. Turner, S. King, Y. Zhou and B. Fu

SUSY 2023 Southampton, 21 July 2023

The Standard Model: current issues

- Neutrino Masses and Mixing
- Baryogenesis
- The Standard Model gauge group is arbitrary
- The fermion masses and the mixing angles are free parameters
- Dark matter, ...

We need an extension of the Standard Model!

See talk by Yeling Zhou, Shaikh Saad etc...

Grand Unification Theory

SO(10)

Gauge coupling unification

- If we study the running of the couplings of the Standard Model they almost approach the same value
- Assuming an UV complexion after a certain scale all the couplings exactly match at a certain scale
- Strong, weak and electromagnetic interactions are unified into a single fundamental force at high energies

It embeds all fermions plus an extra Standard Model singlet in one representation

$$\psi_{+} = \begin{pmatrix} u & d & \nu & e & u^c & d^c & \nu^c & e^c \end{pmatrix}_{L}$$

Reduces SM degrees of freedom and predicts fermion masses

The extra singlet can be indentified with the right-handed neutrino

Reduces SM degrees of freedom and predicts fermion masses

$$\mathcal{L} = Y_{10}\overline{\bf 16}_F {\bf 10}_H {\bf 16}_F + Y_{120}\overline{\bf 16}_F {\bf 120}_H {\bf 16}_F + Y_{\overline{126}}\overline{\bf 16}_F \overline{\bf 126}_H {\bf 16}_F$$

$$\mathcal{L}_Y = Y_u \bar{Q} \tilde{\Phi} u_R + Y_d \bar{Q} \Phi d_R + Y_e \bar{L} \Phi e_R + Y_\nu \bar{L} \tilde{\Phi} \nu_R + \text{h.c}$$

Reduces SM degrees of freedom and predicts fermion masses

$$\mathcal{L} = Y_{10}\overline{\bf 16}_F {\bf 10}_H {\bf 16}_F + Y_{120}\overline{\bf 16}_F {\bf 120}_H {\bf 16}_F + Y_{\overline{126}}\overline{\bf 16}_F \overline{\bf 126}_H {\bf 16}_F$$

$$\mathcal{L}_Y = Y_u \bar{Q} \tilde{\Phi} u_R + Y_d \bar{Q} \Phi d_R + Y_e \bar{L} \Phi e_R + Y_\nu \bar{L} \tilde{\Phi} \nu_R + \text{h.c}$$

- The Yukawa couplings at low energies are now related
- The goal is to find a fixed parameterization which is dependent on the Higgs sector
- The Yukawa couplings are not anymore free parameters

$$Y_{\nu} = f(Y_u, Y_d)$$
$$Y_e = g(Y_u, Y_d)$$

The extra singlet can be identified with the right-handed neutrino

- It is possible to predict neutrino masses and mixing angles
- The presence of the right-handed neutrino allows for predicting baryogenesis via leptogenesis

How to test SO(10)

Fu, King, LM, Pascoli, Turner, Zhou 2209.00021

Type IIIc breaking chain

$$SO(10)$$

$$\mathbf{54} \quad \text{broken at } M_X$$
 $G_3^c \equiv SU(4) \times SU(2)_L \times SU(2)_R \times Z_2^C$

$$\mathbf{210} \quad \text{broken at } M_3$$
 $G_2^c \equiv SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X \times Z_2^C$

$$\mathbf{45} \quad \text{broken at } M_2$$
 $G_1 \equiv SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X$

$$\boxed{\mathbf{126}} \quad \text{broken at } M_1$$
 $G_{\text{SM}} \equiv SU(3)_c \times SU(2)_L \times U(1)_Y$

Fu, King, LM, Pascoli, Turner, Zhou 2209.00021

Type IIIc breaking chain

$$SO(10)$$

$$\mathbf{54} \downarrow \text{ broken at } M_X$$
 $G_3^c \equiv SU(4) \times SU(2)_L \times SU(2)_R \times Z_2^C$

$$\mathbf{210} \downarrow \text{ broken at } M_3$$
 $G_2^c \equiv SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X \times Z_2^C$

$$\mathbf{45} \downarrow \text{ broken at } M_2$$
 $G_1 \equiv SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X$

$$\boxed{\mathbf{126}} \downarrow \text{ broken at } M_1$$

$$G_{SM} \equiv SU(3)_c \times SU(2)_L \times U(1)_Y$$

String tension

$$G\mu \simeq \frac{1}{2\left(\alpha_{2R}\left(M_{1}\right) + \alpha_{1X}\left(M_{1}\right)\right)} \frac{M_{1}^{2}}{M_{\rm pl}^{2}}$$

Fu, King, LM, Pascoli, Turner, Zhou 2209.00021

Proton lifetime

$$\tau \simeq 6.9 \times 10^{35} \times \left(\frac{M_U}{10^{16} \text{GeV}}\right)^4 \text{yr}$$

The two scales are linked by

gauge unification constraint

Type IIIc breaking chain

54 broken at M_X

$$G_3^c \equiv SU(4) \times SU(2)_L \times SU(2)_R \times Z_2^C$$

210 broken at
$$M_3$$

$$G_2^c \equiv SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X \times Z_2^C$$

45 broken at
$$M_2$$

$$G_1 \equiv SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X$$

$$\overline{126}$$
 broken at M_1

$$G_{\rm SM} \equiv SU(3)_c \times SU(2)_L \times U(1)_Y$$

Fu, King, LM, Pascoli, Turner, Zhou 2209.00021

Type IIIc breaking chain

54 broken at
$$M_X$$

$$G_3^c \equiv SU(4) \times SU(2)_L \times SU(2)_R \times Z_2^C$$

210 broken at
$$M_3$$

$$G_2^c \equiv SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X \times Z_2^C$$

45 broken at
$$M_2$$

$$G_1 \equiv SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X$$

$$\overline{126}$$
 broken at M_1

$$G_{\rm SM} \equiv SU(3)_c \times SU(2)_L \times U(1)_Y$$

Set RHN neutrino mass up to Yukawa couplings

$$Y_{10}, Y_{120}, Y_{\overline{126}} \\ \downarrow \\ Y_e, Y_{\nu_R}, Y_{\nu}, Y_u, Y_d \rightarrow \text{Fermion masses} \\ \downarrow \\ Y_u = h + r_2 f + i \, r_3 h' \,, \qquad Y_d = r_1 (h + f + i \, h') \,, \qquad Y_{\nu} = h - 3 r_2 f + i \, c_{\nu} h' \,, \\ \downarrow \\ \text{Boltzmann} \\ \text{equations} \qquad Y_e = r_1 (h - 3 f + i \, c_e h') \,, \qquad M_{\nu_R} = f \, \frac{\sqrt{3} \, r_1}{V_{16}} v_S \,, \\ \end{pmatrix}$$

$$Y_{10}, Y_{120}, Y_{\overline{126}}$$

$$\downarrow$$

$$Y_{e}, Y_{\nu_{R}}, Y_{\nu}, Y_{u}, Y_{d} \rightarrow \text{Fermion masses}$$

$$\downarrow$$

$$Y_{v} = -\frac{3r_{2}+1}{r_{2}-1}Y_{u} + \frac{4r_{2}}{r_{1}(r_{2}-1)}\operatorname{Re} Y_{d} + i\frac{c_{\nu}}{r_{1}}\operatorname{Im} Y_{d},$$

$$Y_{e} = -\frac{4r_{1}}{r_{2}-1}Y_{u} + \frac{r_{2}+3}{r_{2}-1}\operatorname{Re} Y_{d} + ic_{e}\operatorname{Im} Y_{d}.$$

$$\mathcal{L}_{\mathcal{I}} = -Y_{\nu} \overline{L_{\alpha}} \tilde{\Phi} N - \frac{1}{2} M_N N^c \mathcal{C}^{\dagger} N_i$$

We solved **Density Matrix Equations** using ULYSSES

$$\varepsilon_{\alpha\beta}^{(i)} = \frac{3}{32\pi \left(\tilde{Y}_{\nu}^{\dagger}\tilde{Y}_{\nu}\right)_{ii}} \sum_{j\neq i} \left\{ i \left[\tilde{Y}_{\nu\alpha i} \tilde{Y}_{\nu\beta j}^{\star} \left(\tilde{Y}_{\nu}^{\dagger} \tilde{Y}_{\nu}\right)_{ji} - \tilde{Y}_{\nu\beta i}^{\star} \tilde{Y}_{\nu\alpha j} \left(\tilde{Y}_{\nu}^{\dagger} \tilde{Y}_{\nu}\right)_{ij} \right] \frac{\xi \left(x_{j}/x_{i}\right)}{\sqrt{x_{j}/x_{i}}} + i \frac{2}{3 \left(x_{j}/x_{i} - 1\right)} \left[\tilde{Y}_{\nu\alpha i} \tilde{Y}_{\nu\beta j}^{\star} \left(\tilde{Y}_{\nu}^{\dagger} \tilde{Y}_{\nu}\right)_{ij} - \tilde{Y}_{\nu\beta i}^{\star} \tilde{Y}_{\nu\alpha j} \left(\tilde{Y}_{\nu}^{\dagger} \tilde{Y}_{\nu}\right)_{ji} \right] \right\},$$

$$K_i \equiv \frac{\tilde{\Gamma}i}{H\left(T = MN_i\right)}, \quad \tilde{\Gamma}i = \frac{MN_i\left(\tilde{Y}\nu^{\dagger}\tilde{Y}\nu^{\dagger}\right)_{ii}}{8\pi}$$

GUTFIT

$$\mathcal{P}_m \in \{a_1, a_2, r_1, r_2, c_e, c_\nu, m_0, \eta_q\}$$

$$\mathcal{O}_n \in \{m_e, m_\mu, m_\tau, \theta_{12}, \theta_{13}, \theta_{23}, \Delta m_{21}^2, \Delta m_{31}^2\}$$

- We considered a different models
- GUTFIT used for scanning the parameter space in the next works
- Scan the parameter space using the MultiNest algorithm (nested sampling)
- It minimize the chi squared.

$$\chi^2 = \sum_n \left[\frac{\mathcal{O}_n(\mathcal{P}_m) - \mathcal{O}_n^{\mathrm{bf}}}{\sigma_{\mathcal{O}_n}} \right]^2$$

Preliminary 23xx.xxxx

Neutrinoless double beta decay and cosmology tests

- SUSY SO(10) model
- Partially testable by neutrinoless double beta decay and cosmological surveys
- It achieve leptogenesis, predict fermion masses and mixing angles

Preliminary 23xx.xxxx

Conclusions

Successful gauge coupling unification

Prediction of fermion masses and mixing angles

Testable with next-gen GW and proton decay experiments

Predict both neutrinoless double beta decay and neutrino masses in reach of the next-generation experimens

Thank you