IceCube Supernova Detection and Contributions to SNEWS 2.0

Spencer Griswold June 15, 2019

Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA $\,$

THE ICECUBE NEUTRINO OBSERVATORY

SUPERNOVA DETECTION AT ICECUBE

SuperNova Data Acquisition - SNDAQ

CURRENT & FUTURE WORK

ICECUBE AND SNEWS

SUMMARY

The IceCube Neutrino Observatory

- ► IceCube instruments 1 km³ (1 Gt) of the South Pole ice sheet
- Array of 5160 Digital Optical Modules (DOMs)
 - · 86 strings, 125m apart
 - 60 DOMs/string, 17m vertical spacing
 - 1.5 \sim 2.5 km below the surface
- ▶ Optimized for detection of $\mathcal{O}(10 \text{ GeV}) \nu$'s
 - Significant background of down-going cosmic μ events

DOM Design

- Key features
 - PMT, facing downwards
 - Flasher board LEDs for calibrating the surrounding DOMS
 - Glass sphere, protecting against pressure and moisture
- ➤ 300 MHz and 25MHz digitization and FPGA rate scalers
- Simple multiplicity trigger based on coincident hits in groups of > 8 DOMs (SMT8)

Grid

The IceCube Neutrino Observatory

SUPERNOVA DETECTION AT ICECUBE

SUPERNOVA DATA ACQUISITION - SNDAQ

CURRENT & FUTURE WORK

ICECUBE AND SNEWS

SUMMARY

The Supernova Neutrino Signal in IceCube

 \blacktriangleright Using a model for a 13 M_{\odot} progenitor at 10 kpc by Nakazato et. al

The Supernova Neutrino Signal in IceCube

Performance:

- 1. High statistics measurements of the $\bar{\nu}_e$ light curve
- 2. Potential sensitivity to short time-scale phenomena
- 3. Using coincident hits, $\langle E_{\nu} \rangle$ can be estimated.

Current Sensitivity to $\langle E_{\nu} \rangle$

- Coincident hit distributions depend on the shape of the energy spectrum.
- ▶ χ^2 scan over $\langle E_{\nu} \rangle$ and α plane yields $\sigma(E_{\nu})/\langle E_{\nu} \rangle \approx 30\%$
- ► Using a model for a 8.8M_☉ progenitor at 10 kpc by Hüdepohl et. al
 - Initial Guess: $\langle E \rangle = 12.6 \text{ MeV}, \alpha = 2.84$

IceCube SN Performance

► For 4 progenitors, with randomly sampled distances, only the lightest has overlap with background.

THE ICECUBE NEUTRINO OBSERVATORY

Supernova Detection at IceCube

SUPERNOVA DATA ACQUISITION - SNDAQ

CURRENT & FUTURE WORK

ICECUBE AND SNEWS

SUMMARY

Supernova Detection

- ► CCSN produce $\mathcal{O}(10 \text{ MeV})\nu$'s
 - Too dim to trigger the SMT8
 - Will produce a correlated rise in the individual hit rates of the DOMs

- SNDAQ: online software search correlated hit rates above background
 - Receives unprocessed data in 1.6384 ms bins, later rebinned to 2 ms
 - Searches binned to 0.5s, 1.5s, 4.0s, 10.0s (Above)
 - · Likelihood of excess correlated hits over background
 - \cdot Background estimated over \sim 10-minute sliding interval

SNDAQ - Likelihood

SNDAQ sliding window maximum likelihood

$$\ln \mathcal{L}(\Delta \mu) = \sum_{i=1}^{N_{\text{DOM}}} - \frac{\left[r_i - (\langle r_i \rangle + \varepsilon_i \Delta \mu)^2\right]}{2 \langle \sigma_i \rangle^2} - \frac{1}{2} \ln 2\pi \langle \sigma_i \rangle^2$$

- $ightharpoonup r_i = \text{count rate in DOM } i$
- $ightharpoonup \sigma_i$ = count rate uncertainty in DOM i
- \triangleright ε_i = relative efficiency of DOM i
- $ightharpoonup \Delta \mu$ = correlated increase in DOM rates across the full detector within sliding search window.

Supernova Event

THE ICECUBE NEUTRINO OBSERVATORY

SUPERNOVA DETECTION AT ICECUBE

SuperNova Data Acquisition - SNDAQ

CURRENT & FUTURE WORK

Software Improvements

Hardware Improvements

ICECUBE AND SNEWS

SUMMARY

Bayesian Blocks

Let the data determine the optimal binning!

▶ SNDAQ Binning tuned to SN simulations and SN1987a.

From R. Cross, ICRC 2017

► Tune-able, sliding window for SNDAQ. Easy-to-optimize trade-off between sensitivity and false-positive rate

Bayesian Blocks

Let the data determine the optimal binning!

▶ SNDAQ Binning tuned to SN simulations and SN1987a.

► Tune-able, sliding window for SNDAQ. Easy-to-optimize trade-off between sensitivity and false-positive rate

Atmospheric Muon Correction

- Depth dependent atmospheric muon rate (3-30Hz)
- lacktriangle Causes seasonal dependence in SNDAQ test statistic $\xi = \Delta \mu / \sigma_{\Delta \mu}$
- \blacktriangleright Main DAQ provides SMT8 rate; correlation with ξ is zeroed out.

HitSpool

HitSpool: Online system for storing and accessing raw DOM waveforms.

- ► SNDAQ retrieves SN Candidate data from HitSpool Buffer.
 - · Not limited to the 2 ms resolution of SNDAQ!
- ▶ Useful general tool for handling raw data LVC HitSpool requests

IceCube Gen2 Upgrade

IceCube Gen2 Hardware

Multi-PMT optical Module (mDOM)

- ► 24× 3" PMTs (Larger area)
- \blacktriangleright 4 π acceptance
- ► Single-mDOM local coincidence
- ightharpoonup Sensitivity to low energy u

Multiple other OM designs (e.g. WOM)

From C. Lozano, Neutrino 2018

	Trom e. Lezame, reading 20		
n coinc	N _v	False SN rate (yr ⁻¹)	d [kpc] for 50% SN detection $27M_{\odot}$ (9.6 M_{\odot})
≥5	51	1.7	177 (109)
≥5	55	0.04	170 (105)
≥6	7	3.3	323 (193)
≥6	9	<0.001	286 (171)

mDOM Sensitivity to SN $\langle E_{\nu} \rangle$

- \blacktriangleright Simulation of SN at 10 kpc with 27 M_{\odot} Background
- $\blacktriangleright \chi^2$ scan over $\langle E_{\nu} \rangle$ and α plane yields $\sigma(E_{\nu})/\langle E_{\nu} \rangle \leq 5\%$
 - Recall, current hardware yields $\sigma(E_{\nu})/\langle E_{\nu} \rangle \approx$ 30%

THE ICECUBE NEUTRINO OBSERVATORY

SUPERNOVA DETECTION AT ICECUBE

SuperNova Data Acquisition - SNDAQ

Current & Future work

Current Contributions

Future Contributions

SUMMARY

- ightharpoonup Currently, we send significance ξ and time of alerts.
- ► Lowering the alert threshold could provide a trigger for a new low threshold SNEWS network.
 - · Also for data pipeline tests.

▶ Alert latency of ~7 min is due mainly to symmetric search window

Time since left edge of bin of interest (s)

▶ Alert latency of ~7 min is due mainly to symmetric search window

- Why not use an asymmetric window?
- ► Latency with SNEWS is reducible to ~ 2 min

From B. Eberhardt, (Ph.D. thesis, 2017)

- ► Technically easy to share light curves, but a M.o.U. is required.
 - · Light curves (2ms binning) for triangulation
 - Raw waveforms available after \sim 3 4 days
 - · Directional information from mDOMs (Eventually)
- ▶ Also possible to send precise measurement of burst onset time.

- ▶ Technically easy to share light curves, but a M.o.U. is required.
 - · Light curves (2ms binning) for triangulation
 - Raw waveforms available after \sim 3 4 days
 - Directional information from mDOMs (Eventually)

The IceCube Neutrino Observatory

Supernova Detection at IceCube

SUPERNOVA DATA ACQUISITION - SNDAQ

CURRENT & FUTURE WORK

ICECUBE AND SNEWS

SUMMARY

- 1. IceCube has the largest effective volume for SN neutrino detection
 - · For a CCSN, will provide high statistics measurement of $\bar{\nu}_e$ light curve
 - · High chance of detection (80%) in the LMC, SMC
 - Some sensitivity to $\langle E_{\nu} \rangle$ (30% resolution)
- 2. Software improvements
 - · HitSpool Reduce limitations from time binning
 - Muon Correction Reduce the effect of cosmic rays
 - · Bayesian Blocks reduce model dependence of online trigger
- 3. Improvements to Hardware, specifically the mDOM, will substantially improve background reduction and sensitivity to $\langle E_{
 u} \rangle$
- 4. A variety of data could be sent to SNEWS with little technical effort, but a detailed M.o.U. is required

- IceCube has the largest effective volume for SN neutrino detection
 - · For a CCSN, will provide high statistics measurement of $\bar{\nu}_e$ light curve
 - · High chance of detection (80%) in the LMC, SMC
 - Some sensitivity to $\langle E_{\nu} \rangle$ (30% resolution)
- 2. Software improvements
 - · HitSpool Reduce limitations from time binning
 - Muon Correction Reduce the effect of cosmic rays
 - · Bayesian Blocks reduce model dependence of online trigger
- 3. Improvements to Hardware, specifically the mDOM, will substantially improve background reduction and sensitivity to $\langle E_{\nu} \rangle$
- 4. A variety of data could be sent to SNEWS with little technical effort, but a detailed M.o.U. is required

- IceCube has the largest effective volume for SN neutrino detection
 - · For a CCSN, will provide high statistics measurement of $\bar{\nu}_e$ light curve
 - · High chance of detection (80%) in the LMC, SMC
 - Some sensitivity to $\langle E_{\nu} \rangle$ (30% resolution)
- 2. Software improvements
 - · HitSpool Reduce limitations from time binning
 - · Muon Correction Reduce the effect of cosmic rays
 - · Bayesian Blocks reduce model dependence of online trigger
- 3. Improvements to Hardware, specifically the mDOM, will substantially improve background reduction and sensitivity to $\langle E_{\nu} \rangle$
- A variety of data could be sent to SNEWS with little technical effort, but a detailed M.o.U. is required

- 1. IceCube has the largest effective volume for SN neutrino detection
 - · For a CCSN, will provide high statistics measurement of $\bar{\nu}_e$ light curve
 - · High chance of detection (80%) in the LMC, SMC
 - Some sensitivity to $\langle E_{\nu} \rangle$ (30% resolution)
- 2. Software improvements
 - · HitSpool Reduce limitations from time binning
 - Muon Correction Reduce the effect of cosmic rays
 - · Bayesian Blocks reduce model dependence of online trigger
- 3. Improvements to Hardware, specifically the mDOM, will substantially improve background reduction and sensitivity to $\langle E_{\nu} \rangle$
- 4. A variety of data could be sent to SNEWS with little technical effort, but a detailed M.o.U. is required

- 1. IceCube has the largest effective volume for SN neutrino detection
 - · For a CCSN, will provide high statistics measurement of $\bar{\nu}_e$ light curve
 - · High chance of detection (80%) in the LMC, SMC
 - Some sensitivity to $\langle E_{\nu} \rangle$ (30% resolution)
- 2. Software improvements
 - · HitSpool Reduce limitations from time binning
 - Muon Correction Reduce the effect of cosmic rays
 - · Bayesian Blocks reduce model dependence of online trigger
- 3. Improvements to Hardware, specifically the mDOM, will substantially improve background reduction and sensitivity to $\langle E_{\nu} \rangle$
- 4. A variety of data could be sent to SNEWS with little technical effort, but a detailed M.o.U. is required

Thank You

Questions?

Neutrino Interactions

▶ The primary supernova neutrino signals in IceCube are

$$\bar{\nu}_e + p \rightarrow n + e^+ (\sim 94\%)$$

 $\nu_e + e^- \rightarrow \nu_e + e^- (\sim 2\%)$

IceCube Gen2 Extra-galactic SNe Detection

From C. Lozano, Neutrino 2018

- \blacktriangleright Simulated detector with 10,000 mDOMs, using $n_{coinc} \geq$ 6, $N_{\nu} = 9$
- ▶ 50% chance of SN detection for $27M_{\odot}(9.6M_{\odot})$ at 309 (185) kpc