

Supernova Early Warning in the Daya Bay Reactor Neutrino Experiment

Zhe Wang, Tsinghua University (for the Daya Bay Collaboration) June 16, 2019 @ SNEWS2.0

Importance of SN ν Study

- SNv are a key diagnostic for the dynamics of core collapse and SN explosion
 - ▶ ~99% of the stellar collapse gravitational binding energy
 - Arrive a few hours before optical SN explosion (Early Warning)
 - SN explosion rate ~0.01/year in kpc ~1/year in Mpc
- Neutrino properties
 - Oscillation
 - Mass hierarchy
 - Matter effect
- Contribute to astrophysics and cosmology
- Joint analysis with gravitational wave experiment

DayaBay Neutrino Experiment 3 sites, 8 antineutrino detectors (ADs)

Far: 4 ADs

Target mass: 80 (GdLS) +80 (LS) ton 1600 m to LA, 1900 m to DYB Overburden: 350 m Muon rate: 0.04 Hz/m2

> Ling Ao near: 2 ADs Target mass: 40 (GdLS) +40 (LS) ton Baseline: 500 m Overburden: 112 m Muon rate: 0.73 Hz/m2

Daya Bay near: 2 ADs Target mass: 40 (GdLS) + 40 (LS) ton Baseline: 360 m Overburden: 98 m Muon rate: 1.2 Hz/m2

$SN\nu$ Energy and Time Spectra

2019/6/16

Supernova Online Trigger in DYB

- ✤ Energy Resolution: ~3% @10MeV
- Time accuracy: GPS < 200ns</p>
- Energy Threshold: 0.7MeV
- Time latency: ~10s
- 8 AD deployment in 3 experiment sites 1km apart from each other

 Better rejection to muon-induced fast neutron background than one single detector
 Increase Signal-to-Background ratio, thus increase sensitivity of SN explosion

Supernova Trigger Flow Chart

Online Sub-system

- 1. IBD event online reconstruction
- 2. Cache each AD's IBD selection to supernova trigger server
 - Count the events within 1s for each AD labelled with timestamp
- 3. Sending each-AD trigger info to offline part
- 4. Send running status (per second) to monitor system

Online Reconstruction

• Energy Reconstruction: $E = \frac{\text{ADC Sum}}{[\text{Average PMT Gain}] \cdot [\text{Average Energy Scale}]}$

- PMT Gain: ~19 ADC per PE for all ADs
- EnergyScale: ~170 PE/MeV for all ADs
- $\mathbf{X} = \frac{\sum_{PMT} ADC_{PMT} \cdot \mathbf{X}_{PMT}}{\sum_{PMT} ADC_{PMT}}$ Vertex Reconstruction:
- Two key points for online reconstruction:
 - PMT Gain: minor influence on supernova trigger (1% error)
 - EnergyScale: minor influence on supernova trigger (1% error)
- Cut: prompt-delayed distance and time

Online Signal Selection

Single AD SN ν Selection Efficiency

Offline Part and Monitor

1. Combine all ADs' event

counts

Every 1s sum up the event counts in the previous 10s for each AD Form a *combination case* of the event counts in the same 10s of all ADs

2. Judge the supernova trigger

Set supernova trigger cut: sets false trigger rate Judge combination case against supernova trigger table

3. Alert to SNEWS by mail application

- 4. Auto-write into database
- 5. Send status to monitor system 2019/6/16

Offline sub-system

Trigger Table & Trigger Cut

- Study potential background to supernova triggers
- List of combination cases ordered by trigger rate for sliding 10 seconds

Dataset: P12E (Dec. 24, 2011 ~ Jul. 28, 2012) (6 AD period)

AD1	AD2	AD3	AD4	AD5	AD6	SUM	COUNT	RATE(Hz)		
0	0	0	0	0	0	0	10325376	0.63131593		
0	1	0	0	0	0	1	1561089	0.09544837	Sum:	
1	0	0	0	0	0	1	1552738	0.09493778	0.897Hz	
0	0	1	0	0	0	1	1234517	0.07548105		
1	1	0	0	0	0	2	239280	0.0146301	This cut:	
0	1	1	0	0	0	2	188711	0.0115382	1 0 007 -	
1	0	1	0	0	0	2	186826	0.01142295	1 - 0.897 =	
0	0	0	1	0	0	1	131401	0.00803414	0.103Hz	
0	0	0	0	1	0	1	130820	0.00799862	~1/10s	
0	0	0	0	0	1	1	128114	0.00783317		
0	2	0	0	0	0	2	120530	0.00736947		
2	0	0	0	0	0	2	117117	0.00716079		
0	0	2	` .0	0	0,/	2	75527	0.00461788		
YB near site:		LA near site:		Far site:		A descending order				
0.015Hz		~0.012Hz		~0.00)12Hz					

Combination case 1-0-1-0-0 means 10s counts from AD1 to AD6

Trigger Table & Trigger Cut

Correlation between ADs Considered

- ✓ From the measured trigger table, correlation between ADs for supernova trigger could also be measured.
- ✓ Statistic error ~0.0006

	Correlation	AD1	AD2	AD3	AD4	AD5	AD6
Dyb -	AD1	1	0.0027	0.0007	-0.0003	-0.0002	0.0002
	AD2	-	1	0.0007	-0.0004	0.0003	-0.0002
	AD3	-	-	1	0.0002	-0.0002	-0.0002
Γ	AD4	-	-	-	1	0.0009	0.0007
Far -	AD5	-	-	-	-	1	0.0011
	AD6	-	-	-	-	-	1

Main reason for the correlation: The muon gets through the detectors in one site and induces fast neutron in the path.

SNEWs Trigger Reprocessing

- Supernova Trigger should be identical and independent to all ADs.
 - A χ^2 cut is applied to remove the triggers which has very non-uniform trigger distribution in 8 ADs.
 - Expected value for each AD is avg. of total events.
 - Cut: 18.475 (ndf=7, 99%C.L.)
 - E.g, 0000044 is removed out of golden trigger.
 - Packing consecutive supernova triggers

Workload of Supernova Trigger to

- Data-taking System
- Process the raw data file using same program as online
- Check the avg. time of filling one event
- Physics Run
 - Supernova ON / Supernova OFF: 100%+8%
 - Red: Supernova Trigger Program (8% of Green, 0.4% of Blue)
 - Green: Histogram Filling Program
 - Blue: Total data taking time
- IkHz Pedestal Run
 - Supernova ON / Supernova OFF: 100%+20%

Online Sensitivity

*Expected SNv events (SN1987A-type) $N_{AD} = N_0 \times \frac{L_{\bar{\nu}_e}}{5 \times 10^{52} \text{erg}} \times \left(\frac{10 \text{ kpc}}{D}\right)^2$

Within 10 seconds ~98% events
Single AD efficiency to SNv ~70%
Determine total detection probability

Daya Bay SN ν Trigger Performance

Summary for Supernova Online Trigger

Function

IBD selection, Combination, Control the false alarm rate

Database, Email Alert, DAQ status cross check

Performance

Entire design works smooth and effective.

Workload to DAQ: extra 8% for physics run (0.4% data taking time)

Time Latency from trigger to alarm ~10s

Advantage

Low Energy Threshold

Better Energy Resolution than water

Time Accuracy

Online Detection Probability > 94% within Milky Way

Equivalent Target Mass ~0.8kt

Thanks. Questions and comments are welcome.