# University of the state of the





# Offline performance studies of Core Collapse Supernova neutrino detection with KM3NeT

Marta Colomer Molla

SNEWS2.0 Workshop 14-16 June 2019

# Core-Collapse Supernova neutrinos:



#### Motivation:

- Only observation: SN1987A
- → 25 neutrinos detected
- Prove the explosion mechanism: neutrinos play a major role
- Prompt 1-100 MeV neutrino emission reviving the shock
- Constrain the theoretical models
- Neutrino properties measurements
- Extreme environment:
  - → New physics

## KM3NeT

Under construction New technology

-115 instrumented lines per block -18 Digital Optical Module (DOM) per line -More than 2000 DOMs per block

2 blocks in Italy:ARCA (larger, 1km3)- HE astrophysics→ 1 line taking data!

1 block in France:ORCA (more dense)-Neutrino oscillations→ 2lines taking data!



### KM3NeT detectors:

|                 | ANTARES | ORCA   | ARCA   |
|-----------------|---------|--------|--------|
| Eff. Mass       | 10 Mt   | 5.7 Mt | 1 Gt   |
| Line length     | 350 m   | 200 m  | 650 m  |
| Inter-line dist | 70 m    | 20 m   | 90 m   |
| Inter-OM dist   | 14.5    | 9 m    | 36 m   |
| Depth           | 2450 m  | 2450 m | 3500 m |



3\*10" PMTs -> 31\*3" PMTs same sensitive area +compactness +wider angle of view +directional information +digital photon counting

**DOM** 







- -12 lines
- -25 storeys per line
- -3 PMTs per storey

**ANTARES** storey

> ORCA: 1 block



## Multi-energy neutrino spectrum:



### CCSN neutrino detection in water:

- Large amount of 1-100 MeV promp neutrino emission: anti-nue dominate during accretion phase (~500ms)
- Main interaction: anti-nue with protons (IBD), also ES (~3%)
- We expect ~1000-8000 events with double coincidence selection: storage of all data needed (at ms precision)

#### What we do:

- Detection performance + real-time alerts (See talk by M.Lincetto)
- Time resolution: light-curve physical features + pointing
- Energy resolution: neutrino spectrum

## Monte-Carlo simulation in KM3NeT

- Development of a low energy MC neutrino generator for KM3NeT.
- Flux from 3D CCSN simulations by Garching Group: 3 energy and time dependent parameters in the model:  $L(E_{\nu},t)$ ,  $\alpha(E_{\nu},t)$  and  $\langle E_{\nu} \rangle (E_{\nu},t)$
- Main interaction channel  $\rightarrow$  Inverse Beta Decay (IBD):  $\overline{\nu}_e + p \rightarrow e^+ + n$



### Detection method:



Exploit multi-PMT technology to achieve better performance!

- Event reconstruction is <u>not possible</u>
- <u>Signal</u> = Overall increase of detected PMT rates over bkg expectation
- Selection of events producing few ns time <u>coincidences</u> between the PMTs to reduce bkg→ <u>multiplicity selection</u>
- Multiplicity: number of PMTs in a DOM receving a photon within 10 ns



# Signal and background events:

#### **PRELIMINARY**

| Multiplicity            | 1     | 2     | 3     | 4     | 5     | 6  | 7  | 8  | 9  | 10 |
|-------------------------|-------|-------|-------|-------|-------|----|----|----|----|----|
| $N_{ev}$ $27 M_{\odot}$ | 1.6e5 | 5.0e3 | 1.0e3 | 3.8e2 | 1.7e2 | 88 | 46 | 23 | 12 | 5  |
| $N_{ev}$ $11 M_{\odot}$ | 4.1e4 | 1.2e3 | 247   | 85    | 38    | 18 | 9  | 5  | 2  | 1  |

Table: Signal event statistics as a function of the multiplicity

| Progenitor mass   | ∆t (ms) | N <sub>b</sub> ORCA | N <sub>b</sub> ARCA | Ns  |
|-------------------|---------|---------------------|---------------------|-----|
| 27 <i>M</i> ⊙     | 543     | 60                  | 98                  | 174 |
| 11 M <sub>☉</sub> | 340     | 38                  | 61                  | 34  |

Table: Number of background and signal events in the 6-10 multiplicity cut after the muon filter, per KM3NeT building block in the ORCA and ARCA configurations.

# Significance of the detection

- → Coverage of the full Galaxy combining ORCA and ARCA (27M☉)
- → Beyond the Galactic Center with full ORCA (11M☉)



(Time window search used in the analysis: duration of the simulation)

## What to learn on CCSN neutrinos?

- Multi-PMTs (multiplicity) for optimal sensitivity and energy estimation
- Double coincidences for time information: high statistics (large detector)



## What to learn on CCSN neutrinos?

- Multi-PMTs (multiplicity) for optimal sensitivity and energy estimation
- Double coincidences for time information: high statistics (large detector)



# Fast time variations on the neutrino light-curve: SASI

 Standing Accretion Shock Instability (SASI): hydrodynamical instabilities during CCSN predicted by recent 3D simulations → Directional effect

• Footprint: Time variations in the neutrino light-curve around 200ms

Feature: Characteristic oscillation frequency (80Hz) seen trough Fourier analysis

Enhances the neutrino heating favoring the explosion:

→ can help understanding the mechanism!

Potentially correlated with GW emission!







# Progenitor models and detector response to CCSN signal time profile

- → We use double (5ns) coincidences (high stats, reduce biolum)
- → Expected signal in 115 detection lines (1 block) @ 10 kpc



Now, add background and see...

## Light-curves and Power Spectrum:



# Analysis method & preliminary results:

#### Model dependent approach:

Look for a significant power excess around the expected SASI frequency



#### Model independent approach:

Look for a significant peak on the Power Spectrum at any frequency



## What to learn on CCSN neutrinos?

- Multi-PMTs (multiplicity) for optimal sensitivity and energy estimation
- Double coincidences for time information: high statistics (large detector)



# Determining the mean energy of CCSN neutrinos

Simplified flux model used here to investigate 2D parameter space:
 Mean neutrino energy and pinching shape parameter (α)

$$f_{v}^{SN} = \frac{1}{4\pi (10 \text{ kpc})^{2}} \left\{ \frac{3 \times 10^{53} \text{ erg}}{6 \text{ } \widetilde{E}_{v}} \times \frac{0.25}{100 \text{ ms}} \right\} \frac{E_{v}^{\alpha} \text{exp(-(}\alpha + 1)E_{v}/\widetilde{E}_{v})}{\text{Normalization}}$$

- More energetic events: More high multiplicity (M) & less low M events
- Use low to high level coincidences ratio: multiplicities from 3 to 10
- 2D  $X^2$  method to constrain  $\langle E_v \rangle$  and  $\alpha$ :

$$\chi^2(\langle E_{\nu} \rangle, \alpha) = 2 \sum_{M=3}^{M=10} (\mu_M - n_M + n_M \times ln(\frac{n_M}{\mu_M}))$$



# Constraining the mean energy of CCSN neutrinos:



Degeneracy between  $\alpha$  and  $\langle E_{\nu} \rangle$  in the 2D parameter space

Scan over  $<E_{\nu}>$  and fixed  $\alpha$  plane yields:  $\sigma(E_{\nu})/<E_{\nu}>\sim 2-3\%$ 

(Conservative ν flux, close to 11Msun values)

## What to learn on CCSN neutrinos?

- Multi-PMTs (multiplicity) for optimal sensitivity and energy estimation
- Double coincidences for time information: high statistics (large detector)



# Determination of the neutrino arrival at the different detectors

#### Why?

#### **Panel I: Discussion**

- Needed for pointing to the source by triangulation
- Needed to search for an EM and/or GW counterpart
- IDEA: Extract the time delay between SN neutrinos at different detectors from experimental light-curves: Model independent
- GOAL: Include this into SNEWS system for fast localization



#### How?

- Chi2: fit time delay between signal in two light-curves
- Normalized cross-correlation
- Only (<)1sec of data needed</li>

## Combining light-curve information

#### **Panel I: Discussion**

#### What can we by gain exhanging experimental light-curves?

- Comparison of observed signal with expected signal: requires precise models + distance and progenitor information
- It can be used for more than pointing: constrain the physics
- No need to specify a particular time point
- PROBLEM: Can we use this when different detection channels?

#### Preliminary results with KM3NeT and IC data:

- Combined preliminary result IC+ARCA @10 kpc: δt=7ms
  - → No worst results than only experiment T0 fit (to be verified with other experiments data)
  - → Helps improving resolution for background dominated experiments: more detectors can enter the game

# Pointing to CCSN with neutrinos:



Confidence Level (%)

### Conclusions and Outlooks:

- KM3NeT will contribute to the neutrino detector network observing the next Galactic CCSN explosion
- Potential to resolve the SN neutrino energy spectrum and light-curve → constrain the models
- Global detector network needed for triangulation and high event statistics (+ complementary channels and information)
   → crucial for MM observation and understanding the mechanism
- Expected improvements with multi-lines data
  → additional background rejection strategies possible
- More lines taking data coming this summer!
- Looking forward for the results with ORCA6+ARCA2 this year!