

The Borexino nylon vessel filled with the scintillator (picture of few days ago)

Inside view of the Borexino sphere holding the Photomultipliers

G. Testera (Borexino Collaboration) - TAUP2017 Sudbury

 $4H + 2e^{-} \rightarrow {}^{4}He + 2e^{+} + 2\upsilon_{e} + 26.7 \quad MeV$

 $^{14}N + p \rightarrow ^{15}O +$

About 50 years of solar v: from the solar v problem to v oscillation: LMA-MSW

		v detected	Signal	Signal/SSM
Radiochemical	Homestake	⁷ Be, pep, CNO, ⁸ B	256 ± 0.23 SNU	0.32 ± 0.05
	Gallex/GNO /SAGE	pp, ⁷ Be, pep,CNO, ⁸ B	66.2 ± 3.1 SNU	0.52 ± 0.03
nkov	SK I+II+III+IV	⁸ B	Φ _{8B} =2.345±0.039 10 ⁶ cm ⁻² s ⁻¹	0.42 ± 0.06
Water Chere	SNO	⁸ B	$\Phi_{\rm ES}$ =2.04±0.18 10 ⁶ cm ⁻² s ⁻¹ $\Phi_{\rm CC}$ =1.67±0.07 10 ⁶ cm ⁻² s ⁻¹ $\Phi_{\rm nc}$ =5.25±0.20 10 ⁶ cm ⁻² s ⁻¹	0.36 ± 0.06 0.30 ± 0.04 0.94 ± 0.14
ator	Kamland	⁷ Be ⁸ B	58.2± 9.4 cpd/100t 0.15 ± 0.02 cpd/100t	0.66 ± 0.11
Scintilla	Borexino Phase I (new Phase II not included here)	pp (Phase II) ⁷ Be pep CNO ⁸ B	144 ± 16 cpd/100t 46.0± 2.2 cpd/100t 3.1 ± 0.7 cpd/100t 0.22 ± 0.04 cpd/100t <7.9 95% CL cpd/100t	0.75 ± 0.08 0.63 ± 0.05 0.70 ± 0.15 0.43 ± 0.10

- Evidence of v oscillations
- Interaction of v with matter MSW
 Kamland reactor results + solar
 (before Borexino&Kamland solar) : LMA-MSW (year 2002)

Presently: ➤ SuperK

➢ Borexino

Why do we still measure solar v? 1) Precision meas. to confirm LMA-MSW prediction

- Pee should show a vacuum to matter transition
- Non Standard Interactions modify Pee
- Precise flux meas. of single spectral component
- Measure ⁸B with low threshold
- Have good accuracy for the lowest ⁸B energy bin

Pee vs energy: the importance of the precision spectroscopy

Maltoni & Smirnov, Eur. Phys. J. 2016

G. Testera (Borexino Collaboration) - TAUP2017 Sudbury

Why do we still measure solar n? 1) Confirm LMA-MSW prediction

- Matter effect in v oscillation
- Regeneration effect during night (v traverse the Earth)
- LMA-MSW: no effect for ⁷Be, measurable effect for ⁸B

🔂 Day time

 ϑ_z

Why do we still measure solar v? 2) Solar models

But solar models reproducing these new LZ values disagree with elioseismology data (solar abundance problem)

G. Testera (Borexino Collaboration) - TAUP2017 Sudbury

Borexino detector@LNGS

New Borexino results: first simultaneous precision spectroscopy of low energy solar v with Phase II data

- Low energy
- ➢ pp, ⁷Be, pep interaction rates and fluxes (CNO limit)

• Precision

- We increase the accuracy of our previous results
- Increased exposure
- Lower background
- Improved models of the detector response functions

• First simultaneous

- We analyze simultaneously all the energy spectrum from 0.186 to 2.97 MeV
 - \blacktriangleright All v obtained with a single analysis
 - Previous data were obtained analyzing selected regions of the spectrum

Signal and background

Data energy spectrum before and after cuts

Simulated energy spectrum including solar ν and the main background components

Event selection

- removal μ and cosmogenics (1.5% dead time)
- removal of Bi-Po214
- noise events
- Fiducial Volume (R<2.8 m, -1.8 < z < 2.2m)
- 71.3 tons
- no $\alpha\beta$ discrimination
- Fraction of good events removed by cuts <0.1%

Purification: reduction of ⁸⁵Kr, ²¹⁰B

²³²Th (from ²¹²Bi-Po)

- < 5.7 10⁻¹⁹ g/g 95% C.L.
- PHASE 1: 3 10⁻¹⁸ g/g

²³⁸U (from ²¹⁴Bi-Po)

- < 9.4 10⁻²⁰ g/g 95% C.L.
- PHASE 1: 5 10⁻¹⁸ g/g

11C: Three Fold Coincidence and β +/ β - discrimination

$$^{11}C \rightarrow \beta^+, \tau = 29 \quad \text{min}$$

- $\mu + {}^{12}C \rightarrow \mu + n + {}^{11}C \qquad \succ \text{ Identify } \mu \text{ and } \mu \text{ track}$ $\Rightarrow \text{ Detect n } (\gamma \text{ signal due } \gamma)$
 - > Detect n (γ signal due to capture after themalization)
 - > Space time cuts around the μ track and n position: ¹¹C should be there
 - Build a Likelihood function to evaluate if an event is a ¹¹C

Divide the exposure in 2 samples: ¹¹C subtracted & ¹¹C tagged

Performances: 92.4 +- 4 % tagging efficiency exposure: 64% in the ¹¹C subtracted spectrum

Novel β +/ β - pulse shape parameter:

Energy normalized likelihood of the position reconstruction

- Pdf of the position rec. assumes point like, prompt scintillation but:
- e+ slows down, form O-Ps with few ns lifetime
- Multiple interaction of 511 γ within about 20 cm
- The max likelihhood assumes lower values for true $\beta-$ events than for ^{11}C decay

Analysis method

Maximize a binned likelihood through a multivariate approach

 $L(\mathcal{G}) = L_{sub}(\mathcal{G}) \cdot L_{tag}(\mathcal{G}) \cdot L_{rad}(\mathcal{G}) \cdot L_{PS-L_{m}}(\mathcal{G})$

Monte Carlo

- Full simulation of energy loss&detector geometry
- Tracking of single scintill.& Cherenkov photons
- Absorption, re-emission, scattering...
- Detection on PMTs & electronics response simulation
- Tuned with calibration data taken during Phase 1
- Solar v and back, simulated with known time variations of the detector
- Processed as real data
- Data analysis free fit parameters: solar v and background rate
- If it works: MC well tuned & detector is stable

Borexino Monte Carlo: sub% accuracy

Borexino Coll. arXiv:1704.02291 (2017).

Analytical

- Analytical model to link E to Np, Npe ۲
- Including scintillation and Cerenkov Light .
- Model to describe the F resolution
- Some model parameters fixed (comparison with MC or calib, data) •
- Describe the energy response and resolution averaged in the FV ۲
- Data Analysis free fit parameters: ۰

solar v and background rate + 6 model parameters (Light Yield, 2 resolution param., position & width of 210Po peak, starting point of the 11C spectrum)

- See 2. Bagdasarian poster Possibility to descrive unknown time variations ۰
- Easy work at low energy (high rate 14C) •

See S. Marcocci talk

New computation tools based on parallel processing& GPU See X. Ding poster

See X. Ding poster

Toy-MC and sensitivity studies

C11

Results

Example of multivariate fit of the data: Energy spectrum ^{11}C tagged N_h Monte Carlo fit

Results

Example of multivariate fit of the data: Energy spectrum ^{11}C subtracted N_h Monte Carlo fit

Fit results: radial distribution of the events and pulse shape parameter

fit of the radial distribution of the events

- Uniform component
- External background, exp decrease (pdf from MC)

fit of the β +/ β - pulse shape parameter (pdf from data samples or from MC)

Fit Results: details of the low energy region

Example of multivariate fit of the data:

- Energy spectrum zoomed in the low energy region (200-830 KeV)
- N_p^{dt2}
- Analytical fit

Fit results: background

Background	Rate (cpd/100t)
¹⁴ C (Bq/100t)	40.0 ± 2.0
⁸⁵ Kr	6.8 ± 1.8
²¹⁰ Bi	17.5± 1.9
¹¹ C	26.8± 0.2
²¹⁰ Po	260.0± 3.0
Ext ⁴⁰ K	1.1± 0.6
Ext ²¹⁴ Bi	1.9 ± 0.3
Ext ²⁰⁸ Tl	3.3 ± 0.1

Purification of the scintillator
6 cycles, closed loop
Reduction factors:
▶ 4.6 for ⁸⁵Kr
▶ 2.3 for ²¹⁰Bi

Fit results: systematics uncertainty

1) Systematic uncertainties							
If Systematic uncertainties		p_{I}	p	⁷ E	Be	pe	p
	Source of uncertainty	-%	+%	-%	+%	-%	+%
	Fit method (analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	4.0
(N _p N _p ^{dt2} N _h)	Choice of energy estimator	-2.5	2.5	-0.1	0.1	-2.4	2.4
	Pile-up modeling		0.5	0	0	0	0
	Fit range and binning	-3.0	3.0	-0.1	0.1	1.0	1.0
	Fit models (see text)	-4.5	0.5	-1.0	0.2	-6.8	2.8
Energy scale Not uniformity of the energy response	Inclusion of 85 Kr constraint	-2.2	2.2	0	0.4	-3.2	0
	Live Time	-0.05	0.05	-0.05	0.05	-0.05	0.05
²¹⁰ Bi spectral snape	Scintillator density	-0.05	0.05	-0.05	0.05	-0.05	0.05
	Fiducial volume	-1.1	0.6	-1.1	0.6	-1.1	0.6
	Total systematics (%)	-7.1	4.7	-1.5	0.8	-9.0	5.6

New pp, ⁷Be, pep results of the analysis of Phase II data

	Borexino results cpd/100t	expected HZ cpd/100t	expected LZ cpd/100t
рр	134 ± 10 ⁺⁶ ₋₁₀	131.0 ± 2.4	132.1 ± 2.4
⁷ Be(862+384 KeV)	$48.3 \pm 1.1^{+0.4}_{-0.7}$	47.8 ± 2.9	43.7 ± 2.6
pep (HZ)	2.43 ± 0.36 ^{+0.15} -0.22	2.74 ± 0.05	2.78 ± 0.05
pep (LZ)	2.65 ± 0.36 ^{+0.15} _{-0.24}	2.74 ± 0.05	2.78 ± 0.05

	Borexino results Flux (cm ⁻² s ⁻¹)	expected HZ Flux (cm ⁻² s ⁻¹)	expected LZ Flux (cm ⁻² s ⁻¹)
рр	$(6.1 \pm 0.5^{+0.3}_{-0.5}) \ 10^{10}$	5.98 (1± 0.006) 10 ¹⁰	6.03 (1± 0.005) 10 ¹⁰
⁷ Be(862+384 KeV)	(4.99 ± 0.13 ^{+0.07} -0.10) 10 ⁹	4.93 (1± 0.06) 10 ⁹	4.50 (1± 0.06) 10 ⁹
pep (HZ)	(1.27 ± 0.19 ^{+0.08} -0.12) 10 ⁸	1.44 (1± 0.009) 10 ⁸	1.46 (1± 0.009) 10 ⁸
pep (LZ)	(1.39 ± 0.19 ^{+0.08} -0.13) 10 ⁸	1.44 (1± 0.009) 10 ⁸	1.46 (1± 0.009) 10 ⁸

Comparison between Phase I and Phase II results

	Phase I	Phase II	Uncertainty reduction <u>Phase II</u> Phase I
рр	$144 \pm 13 \pm 10$	134 ± 10 ⁺⁶ ₋₁₀	0.78
⁷ Be(862KeV)	46.0 ± 1.5 ^{+1.6} -1.5	46.3 ± 1.1 ^{+0.4} -0.7	0.57
рер	$3.1 \pm 0.6 \pm 0.3$	(HZ) 2.43 \pm 0.36 ^{+0.15} -0.22 (LZ) 2.65 \pm 0.36 ^{+0.15} -0.24	0.61

5 σ evidence of pep solar ν (including systematics uncertainties)

Likelihood profile resulting from the multivariate fit

Select innermost β - like events

Radius<2.4 PS-LPR<4.8

Upper limit on the CNO flux

- Set a constrain to the ratio pp/pep $\frac{1}{2}$
- Very well know in the solar model
- Include oscillations LMA-MSW
- Toy MC study of the sensitivity : the median 95% CL is 9 cpd/100t for LZ 10 cpd/100t for HZ

95% C.L. limit on the CNO n rate 8.1 cpd/100t including systematics errors

Previous limit (set by Borexino Phase I): 7.9 cpd/100t

	Borexino result	Expected HZ	Expected LZ
CNO ν	< 8.1 95%C.L	4.91 +-0.56	3.62 +- 0.37
	cpd/100t	cpd/100t	cpd/100t

G. Testera (Borexino Collaboration) - TAUP2017 Sudbury

Upper limit on the CNO flux

- Set a constrain to the ratio pp/pep $\frac{1}{2}$
- Very well know in the solar model
- Include oscillations LMA-MSW
- Toy MC study of the sensitivity : the median 95% CL is 9 cpd/100t for LZ 10 cpd/100t for HZ

95% C.L. limit on the CNO n rate 8.1 cpd/100t including systematics errors

Previous limit (set by Borexino Phase I): 7.9 cpd/100t

CNO ν	< 8.1 95%C.L	4.91 +-0.56	3.62 +- 0.37
	Borexino result	Expected HZ	Expected LZ

G. Testera (Borexino Collaboration) - TAUP2017 Sudbury

Implication of the results: probe solar fusion with R

$$R = \frac{Rate({}^{3}He + {}^{3}He)}{Rate({}^{3}He + {}^{4}He)}$$

Reaction from the main pp chain

$$R = \frac{2 \Phi(^7 B e)}{\Phi(pp) - \Phi(^7 B e)}$$

Expected values: (C. Pena Garay, private comm,)

 $R = 0.180 \pm 0.011 \quad HZ \\ R = 0.161 \pm 0.010 \quad LZ$

Measured value:

$$R = 0.18 \pm 0.02$$

Neutrino survival probability P_{ee} with the Borexino results

Neutrino survival probability with the new Phase II results and ⁸B from Borexino (PRD 82 033006 (2010)

Implication of the results: towards probing HZ and LZ

Global fit of all solar, Kamland reactors with new Borexino results $f_{B} = \frac{\Phi({}^{8}B)}{\Phi_{HZ}({}^{8}B)} \quad f_{B_{e}} = \frac{\Phi({}^{7}Be)}{\Phi_{HZ}({}^{7}Be)}$ $\Delta m_{12}^{2} \sin^{2}(\theta_{12})$

- hints towards High Metallicity???
- Note: only 1 σ theorethical uncertainty in the plot!
- Important to reduce the theorethical uncertainty

Conclusions

- Solar v experiments (SK, Borexino) are running into a precision spectroscopy phase
- Validation of the MS-LMA model
- Testing solar models and helping to solve the metallicity issue
- New results from Borexino about pp, ⁷Be, pep
- Simultaneous measurement of the 3 fluxes
- Improved accuracy compared to Phase I
- 5 σ evidence of pep v
- ⁷Be measured with 2.5% uncertainty (stat+sys)

also new limit on the effective neutrino magnetic moment from Phase II Borexino data

$\mu_{\rm eff}$ < 2.8 X10⁻¹¹ $\mu_{\rm B}$

(presented by L. Ludhova on Monday)

$$\mu_{eff}^{2} = P^{3\nu} \mu_{e}^{2} + (1 - P^{3\nu}) \left(\cos^{2}\theta_{23} \mu_{\mu}^{2} + \sin^{2}\theta_{23} \mu_{\tau}^{2} \right)$$

$$P_{ee}^{2} = P^{3\nu} = \sin^{4}\theta_{13} + \cos^{4}\theta_{13} P^{2\nu}$$

$$P_{ev}^{2\nu} = \sin^{2}\theta_{12} \sin^{2}(\Delta m_{12}^{2} L/4E)$$

$$Assuming LMA-MSW$$

$$P^{2\nu} \text{ for pp- and } ^{7}\text{Be-v is the same}$$

(Dec 2011- May 2016)
1291 days
90% C.L.
from
$$\mu_{eff} < 2.8 \times 10^{-11} \mu_B$$
:
 $\mu_e < 4.8 \times 10^{-11} \mu_B$
 $\mu_\mu < 6.4 \times 10^{-11} \mu_B$
 $\mu_\tau < 6.8 \times 10^{-11} \mu_B$

²¹⁰Bi independent constraint

$$\begin{array}{c} {}^{210}\text{Pb} \\ (\beta^{-}, \tau = 32y) \end{array} \xrightarrow{210} {}^{210}\text{Bi} \\ (\beta^{-}, \tau = 7d) \end{array} \xrightarrow{210} {}^{210}\text{Po} \\ (\alpha, \tau = 200d) \end{array}$$

Assuming the secular equilibrium the ²¹⁰Bi rate can be determined by the ²¹⁰Po rate [F. Villante et al. Phys.Lett. B701 (2011) 336-341]:

Before thermal insulation

After thermal insulation

2) Lomb-Scargle

The period, amplitude, and phase of the observed time evolution of the signal are consistent with its solar origin, and the absence of an annual modulation is rejected at 99.99% C.L.

	Simulated Data	Data
T [year]	0.95 ± 0.02	0.96 ± 0.05
ε	0.0155 ± 0.0025	0.0168 ± 0.0031
ϕ [day]	-12 ± 11	14 ± 22

[Astropart.Phys. 92 (2017) 21-29]