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There’s plenty of room at the bottom

. - WIMP
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See Tracy Slatyer’s plenary talk for physics motivation for light dark matter
(thermal, asymmetric, freeze-in, SIMP, ELDER...)
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There’s plenty of room at the bottom
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Non-trivial requirements:

* low thresholds

 control of radioactive backgrounds

* control of dark counts & instrumental backgrounds
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US Cosmic Visions: New ldeas in Dark Matter

Many of the technologies discussed here were compiled in the
Cosmic Visions Dark Matter effort in the US, driven by the DOE
Office of High Energy Physics.

Investigating low-cost & high-impact opportunities in Dark Matter
(DM) science

— The G2 experiments (ADMX, LZ, and SuperCDMS) are flagships of the
US Dark Matter program and obvious priority

— “New Ideas in Dark Matter” workshop focused on complementary
science that can be done by small projects <S10M (some much less)

— 100+ talks in 4 working groups, presenting new ideas, proposals, and
science and R&D results

See https://indico.fnal.gov/conferenceDisplay.py?confld=13702
See arXiv:1707.04591

A few of the ideas for direct detection described in this talk.



sub-GeV DM

Distinguish two types of interactions, e.g.

Oe VS MpMm ON VS Mpwm
e dark photon mediator e dark photon mediator
e vector, coupling e vector, coupling
predominantly to leptons predominantly to quarks
e scalar

Important to test interactions separately



Benchmarks: dark-photon mediators
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Absorption

Hidden photon dark matter
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Dark Matter-nucleon cross section [cm?]

Direct Detection Summary Slide from Cosmic Visions
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Nigel Smith (WIMPs) Gianpaolo Carosi (Axions) This talk

XENON ADMX LXe bubble chamber

LUX/LZ HAYSTAC Water bubble chamber

DEAP CAPP Haloscope (CULTASK?) Directional gaseous TPC (CYGNUS)
DarkSide-50/-20k ORGAN Graphene (PTOLEMY G3)

CDEX Orpheus Internally amplified Ge

Edelweiss MADMAX Xenon charge-only

CRESST QUAX Scintillating crystals (GaAs, Nal)
SuperCDMS LC-Circuit Color centers

PICO ABRACADABRA Superfluid helium with TES readout
DAMIC/SENSEI CASPEr Superfluid helium with ionization
NEWS-G

DRIFT

This is not a fully exhaustive list; apologies if your favorite technology is not covered!
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Low Mass Dark Matter:

The W|Id West of Direct Detection
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Low Mass Dark Matter:

The Wild West of Direct Detection

P Sl A0
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Small homesteads, wide open (parameter) spaces
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Backgrounds for sub-GeV

* Solar neutrino background is small

» Radiogenic backgrounds to few-eV electron recoil events likely <1 event/
kg/year/eV (based on projections for measured values at O(50 eV))

* For sub-GeV searches, critical backgrounds are:
e dark counts
* EM interference

* vibrations



SCi nl'i I Ia_tl ng Xenon Bubble Chamber Prototype

(Northwestern University)
Bubble Chamber ﬁz«@camera
* Concept: e

Coincident scintillation

Vacuum Cryostat
PMT

=— 1
o -
and bubble nucleation by z !
nuclear recoils g .
|
Q)
, o, | —65to—-43°C
— Extreme electron recaoil S ! — Oh 4t3d
discrimination as in freon : N superneate
bubble chambers B
— Event-by-event energy Mirrors 7 ! J ! < Scintillation &
from scintillation signal Piezo
— Bubble
— Now demonstrated in .
liquid xenon LXe L ~1057°C
arXiv:1702.08861 < — normal
[PRL 118, 231301] To hydraulic controller |

TAUP - July 26, 2017 16



Scintillating
Bubble Chamber

* Potential for sub-keV
thresholds and light nuclei
(Ar, Ne, ...)

— Better low-threshold
electron discrimination than
freon chambers

— Low-energy NR calibrations
underway

* CEnNS physics in reach at
O(10) kg scale

e Unique 1-10 GeV/c? WIMP
sensitivity at ton-scale

TAUP - July 26, 2017
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Water as a Bubble Chamber
(M. Szydagis, U Albany)

 Water does not naturally scintillate.
BUT:

— Can look at Cerenkov light from high
energy interactions as ER veto

— Better yet, can dope water with quantum
dots, some of which can have triple the
light yield of LXe

* Natural advantages of using H,O

— Cheap, non-cryogenic, and easy to purify; has
lots of protons (sub-GeV DM target).
— Can be passed through hydrophilic nano-pore

membrane, new tech for any bubble chamber
(ora TPC)!




CYGNUS HD10, a 10 m3 gas time projection chamber

Gas mixture: SF6:4He, p ~ 1 atm.

* Possibility of switching from atmospheric pressure (search
mode) operation to low pressure operation for (improved)
directional confirmation of WIMP signal.

* Reduced diffusion via negative lon drift (SF6)

Charge amplification via Micromegas

HD — high resolution charge readout via x/y strips
(200 pum pitch) for improved
* 3D directionality with head-tail sensitivity

*  Electron event rejection
*  Fiducialization

recoil (trach
ionization

Redundant 3D fiducialization E :24 A
*  SF6 minority carriers T 1ot | yrs Ent KeVee \\"\\;‘;‘
. k=) e ™
Charge cloud profile 2 10 !
£ 107
Helium target £ 107 | o TN e
g e s _5 1043 e L) 10m? 200 Torr SFs
*  Improved sensitivity to low mass WIMP g Neutrinos + «— 3yrsF, En30 keVrec
. L il k di | T 107 . (40 kg.yrs)
onger recoil tracks, extending electron event d Highly 10m? 200 Torr SFs
-47 ..
discrimination to lower energies through Helium target § 10 preliminary - 3yrs F, Ein 1 keVrec
Z 10 || likelv to ‘ @Okgyrs) oS
y /a“dosNBNem
107 | change LN et
107 1 10 100 1000
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PTOLEMY-G3

Detector: Graphene field-effect transistors (G-FETs) arranged into a fiducialized volume of
stacked planar arrays — Graphene cube (G3), with mass 1kg ~ 101°cm? ~ 10°cm?3

Will look for MeV dark matter scattering events that liberate an electron from a graphene target,
in the absence of any other activity in the G3

See Y. Hochberg, Y. Kahn, M. Lisanti, C. Tully, K. Zurek, arXiv:1606.08849

G-FET sensor element (Graphene Nanoribbon Array) FET-to-FET hopping

trajectory
RN
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Fiducialized Volume (G3)

G-FET sensor element FET-to-FET hopping

trajectory
RN
I
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NN
et NN
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I
I
: s NN
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A R RN
Y T 77NN
o N~
- <

20 Graphene Nanoribbon Array (produced Stacked planar arrays of G-FETs

at Princeton University) 1kg ~ 10%m? ~ 10°cm3
Resistance-Temperature (RT) and Current- Cryogenically cooled (4.2K)

Voltage (IV) curves in progress Cryopumping of gas contaminants on G3
Scalability to interdigitated capacitor with surface from line-of-sight trajectories
pixel areas of Imm? or larger Low mass substrates with ALD dielectric

produce a total cold mass lighter than ope
LHC magnet



Germanium Detectors with Internal Amplification
(Dongming Mei, U South Dakota)

This experiment would use an ionization
amplification technology for Ge in which very
large localized E-fields are used to accelerate
ionized excitations produced by particle n__
interaction to kinetic energies larger than the
Ge bandgap, at which point they can create
additional electron-hole pairs, producing
intrinsic amplification.

This amplified charge signal could then be
read out with standard high-impedance JFET-
or HEMT-based charge amplifiers.

Such a system would potentially be sensitive
to single ionized excitations produced by DM
interactions with both nuclei and electrons. In
addition, purposeful doping of the Ge could
lower the ionization threshold by a factor of
10, to ~ 100 meV, making the detector
sensitive to 100 keV DM via electron recoils.
7/26/17 D. McKinsey = New DM Technologies 22




Few-electron detection with two-phase Xe detectors
(P. Sorensen, A. Bernstein) UA,(I)

Idea: Deploy a small O(10) kg liquid xenon 7 )
TPC with a focus on electron counting and Prototy
mitigation of e- backgrounds. -

Ways to reduce electron backgrounds:

1) Larger electron emission field
— XENON achieved ~5.5 kV/cm

— Suspect >7 kV/cm needed for substantial
reduction of e-train bkgd

2)Infrared photons to liberate trapped e-
— Liquid surface trapping potential is 0.34 eV

— 940 nm LEDs readily available (1.3 eV photon),
trigger on S2

3) Last resort: HV switching
— Divert trapped electrons back to gate electrode
— Possible in principle, may actually work quite well

7/26/17 D. McKinsey  New DM Technologies



Scintillators with transition edge sensor readout

Sensitivity to dark matter — electron interactions.

No E field = No dark current

Philosophy: Running in equilibrium, use TES
detection efficiency and photon energy resolution to
minimize dark counts.

$

GaAs: Derenzo et al: 1607.01009

Pure Nal, Csl: J. Liu
83 photons/keV seen at 77K

No afterglow seen in GaAs
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Scintillators with transition edge sensor readout

Or, choose your favorite scintillator

(LXe, CaWO,, ...)

Maximize light yield and target

mass, minimize band gap,

afterglow, and background.

No afterglow seen in GaAs

3510°

I

3010° |

Nal('ll'l)“
\
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No dark current
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New DM Technologies
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Color centers

(R. Budnik and collaborators)

Orogsc) 0y
illloreseernce
faoeetige)y
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Event Rate [1000 kg keV y ] -1

Why Superfluid Helium?

Light baryonic target with multiple signal channels, including
light, charge, triplet excimers, phonons, and rotons.
(W. Guo and D. N. McKinsey, PRD 87, 115001 (2013).

m =1 GeV/c?
10% ' ' ‘ ' /
. =104} 7/
> ]
— Xe L 5
——Ge| S 108}
= Ar ) :
) g !
0 0‘:.5 1 1:_5 ! 11 90 100 10 {0*  10°
Recoil Energy [keV] DM mass [ MeV/c2? |
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Superfluid helium-4 as a detector material

« Search for the neutron electric dipole Measurement of neutron lifetime:
moment: R. Golub and S.K. Lamoreaux, P.R. Huffman et al, Nature 403, 62-64 (2000).
Phys. Rep. 237, 1-62 (1994).

Acrylic Lightguide

Solenoids

Racetrack Coil Trapping Region

Magnet Form

Beamstop

TPB-coated GoreTex

Graphite
Copper-Nickel Tube Neutron Shielding
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Superfluid helium-4 as a detector material

Proposed for measurement of pp
solar neutrino flux using roton
detection (HERON): R.E. Lanou,
H.J. Maris, and G.M. Seidel,
Phys. Rev. Lett. 58, 2498 (1987).

Two signal channels, heat and
light. Both measured with a
bolometer array.

Also, “‘HERON as a dark matter
detector?” in “Dark Matter,
Quantum Measurement” ed Tran
Thanh Van, Editions Frontieres,
Gif-sur-Yvette (1996)

Copper Cryostat Moderator

not o scde

Crerer i HERON

7/25/17 D. McKinsey

New DM Technologies

Coded aperture formed
by detectors

Liqud
Hehum

~56m »

29



Why Superfluid Helium-4~?

Liquid down to O K, allowing 10-100 mK-scale TES readout.
— Take advantage of the great advances in TES technology
— Take advantage of possible ~ 100% detection efficiency for photons, triplet excimers

— Take advantage of the extremely low vapor pressure of superfluid helium at low
temperatures, enabling quantum evaporation-based heat signal amplification.

Helium is expected to have robust electronic excitation production efficiency,
with a forgiving Lindhard factor, so nuclear recoil scintillation signals should
be relatively large.

Negligible target cost

Low nuclear mass and charge -> low backgrounds from neutrino-nucleus
scattering and gamma-nucleus scattering.

Low vibration sensitivity: As a superfluid, small velocities don’t generate
excitations.

Large ionization gap -> less signal quanta per keV than in super-,
semiconductors. But no electron recoil background below 16 eV.

Impurities easily removed from helium using cold traps and getters, and will
literally fall out of the superfluid.

7/25/17 D. McKinsey = New DM Technologies 30



Reading Out Singlet Excitations (16 eV Photons)

Detecting photons is a simple calorimetry
application. Operating calorimetry in LHe: less
standard. Possible thanks to:

- Huge LHe-solid Kapitza resistance

Simple detector: box
with calorimetry inside

- Fast conversion of photon energy to
non-phonon excitations
(e.g. Al quasiparticles)

16eV

Triplet excimers may also be read out using photon
the same calorimetry! {é- - W -
F. Carter et al, r Hﬂ
J Low Temp Phys (2016) .| J[
arXiv:1605.00694 g | | T ﬂ+

8 06 1

2 #

204 | %

HILY
0.2} ++ &P*H
++ p +Jr+ +—|_‘|' T+ ﬁ}}kw

0 2 4 6 8 10 12 14 16 18 20
[eV]
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Phonons and Rotons

15 phonons R- R+
Superfluid supports vibrational modes ' ' | | |

(some non-intuitive).

Amaxon
Ballistic, ~150 m/s.
*
Enormous Kapitza resistance, £ A
i.e. tiny probability of crossing into solid. > roton
EJ Ebinding
Few downconversion pathways. ©

Most signal expected in R- and R+
rotons, with absorption probability
measured to be 2.8 x 103, - . . -
See Brown and Wyatt, J. Phys.: Condens. 0 1 2 3 4
Matter 15, 4717 (2003). momentum [keV/c]
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Phonons and rotons can change type when reflecting from surfaces

Calculations based on Tanatarov et al., arXiv:1004.3497

refection mode-change probabilities upper three: solid interface
(blue=0, red=1) lower three: vacuum interface
R[i—>1] R[i—2]

1.5

0 0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
p [eV/c] p [eV/c] p [eV/c]



Quantum evaporation from superfluid helium — vacuum interface

Heat amplification from desorption — adsorption process
Adsorption gives 10-40 meV depending on surface

quasiparticle free atom  bound atom
YW e > o
&
-0.62 meV
Es

large number 1&]¥
of meV

7/25/17 D. McKinsey = New DM Technologies
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Reading out “He Quasiparticles (Quantum Evaporation)

Substantial amplification of heat signal through quantum
evaporation, followed by helium atom adsorption

crossing into solid extremely suppressed
(Kapitza resistance)

...saved by significant probability
of single-atom evaporation at vacuum

Solid: Transmission (20x) Vacuum: Evaporation

-
&)

incident angle (rad.)

0 2000 4000 0 2000 4000
p [eV/c] p [eV/c]

B 42
0 0.5 1
Probability

Energy [meV]
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Athermal Evaporation — Demonstrated by HERON R&D

T [ LA T r

1 11777 1 7¢

*r delayed
singlet athermal -

® ® @ @ ® %\20
<  photons evaporation

S 5 10l \ / ]

w - o

of i

0.0 0.5 1.0 1.5 2.0 2.5
Time (milliseconds)
Fig. 2. (a) The calorimeter response (average of about 100 events)

when an « particle is stopped in liquid helium. The collimated «
tracks are (a) parallel and (b) perpendicular to the liquid surface.
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Superfluid Helium Detector Concept

Signal channels:
1) Scintillation
2) Ballistic Triplet Excimers athermal evaporation
3) Phonons/Rotons

@ 0 Cr ® L J
No drift field, and no S2 signal
* No worry of few-electron background
e Position reconstruction via signal hit §
patterns @
* (Though could apply drift field to detect l\N\l
single electrons via roton/phonon phonons,
production.) § % el
Best for energies down to 300 eV.

Discrimination using signal ratios

Position reconstruction using signal hit
patterns
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Electron recoil / nuclear recoil discrimination

Toy Monte Carlo detection efficiencies:

- singlet UV photons: 0.95 (4pi coverage by calorimetry)
- Triplet excimers: 5/6 (only solid surfaces)

- IR photons: 0.95 (similar to UV photons)

Excellent predicted discrimination at sub-keV energies

Nuclear Recoll Nuclear Recoll
1 T T T 1 px e 0
08} 4
c
k=]
Bos6l
i
Boaf { 04
: 5
02} £
&
0 — L - . (e
10! 102 10° 10* 10° 10! 102 108 10* 10° o
Recoil Energy [eV] Recoil Energy [eV] (reconstructed) >4
<
; Electron Recoll 4 Electron Recoll 8
- - - - Q
Singlet Excimers ® [Rphotons
08} Triplet Excimers || 08 ® Trplet Excimers | | o
< Singlet Excimers © Singlet Excimers w
K] — Quasiparticles ® Quasiparticles
g 06 06
e
804 04
o
&
0.2 = 0.2
-6 L . .
b 1 2 3
0 1 IZ I3 4 |5 . 2 3 I4 5 1 0 1 0 1 0
10 10 10 10 10 10 10 10 10 10 ;
Recoil Energy [eV] Recoil Energy [eV] (reconstructed) Recoil Energy [eV]
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Heat-only Readout?

Signal channels:

Phonons athermal evaporation
Rotons ° ® P o

Energies down to ~ few meV !! §
Discrimination using roton/phonon l\N\) ®phonons,
signal ratios likely. Electron recoils, § % Rions
detector effects, nuclear recoils
likely create different roton/
phonon distributions.

Position reconstruction using
signal hit patterns

7/25/17 D. McKinsey = New DM Technologies



Projected sensitivity to keV-scale dark matter particles

15 phonons R- R+
K. Schutz and K. Zurek, ' ' ' ' '
Phys. Rev. Lett. 117, 121302 (2016) j%
and S. Knapen, T. Lin, and K. Zurek, A\ maxon
arXiv:1611.06228.
< 1
. . q)
Instead of coupling to a single -
H H .y AI’OtOI‘I
nucleus, couple to virtual mode in P
the superfluid helium, which in turn E; Ebinding
decays to multi-excitations o 05
Production of multi-excitations
allows high energy transfer from the
low-mass, low-momentum dark 0 ' . - .
matter particle 0 1 2 3 4

momentum [keV/c]

7/25/17 D. McKinsey = New DM Technologies 40



Expected Backgrounds

Backgrounds included:

- Neutrino nuclear coherent scattering

- Gamma-ray electron recoil
backgrounds (similar to SuperCDMS)

- Note: Helium itself is naturally
radiopure, and easily purified of 10
contaminants

- Gamma-ray nuclear recoil backgrounds 1’
(see Robinson, PRD 95, 021301 (2017) 2 40

=)
£ 1072

Arguments for low “detector” <
backgrounds: § 10
- Low-mass calorimeter, easy to hold Lo-6

- Target mass highly isolated from
environment (superfluid: friction-free 1078
interfaces)

7/25/17 D. McKinsey = New DM Technologies

Total Neutrino

- Neutrino w. Discrimination

Total Gamma NR

- Gamma NR w. Discrimination

Total Compton

- Compton w. Discrimination

Total Background
Background w. Discrimination

10~

Y
10 10 102 10° 10*  10°
Recoil Energy E, [eV]
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Projected Sensitivity

Initial sensitivity studies, taking neutrino and gamma ray

backgrounds into account:

(with S. Hertel, UCB/LBL -> U. Massachusetts, Amherst
Junsong Lin, Andreas Biekert, Vetri Velan, UC Berkeley)

== (.25eV, 1kg-yr

== (.25 eV, 0.1 kg-yr

— ).5 eV, 1kg-yr

m— 2.5 eV, 0.1 kg-yr

=== Neutrino floor in Xe (Billard)
----- CRESST 11 2015

-== CDMSLite 2015

—:= LUX 2017
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10—50
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Projected Sensitivity

Even a small mass (~ kg) of superfluid helium can probe
substantial dark matter parameter space

~ 10736
&
=38
- 10
== 0.25eV, 1 kg-yr .g
== 0.25eV, 0.1 kg-yr 9 1040
— .5 eV, 1kg-yr un
m— 2.5 eV, 0.1 kg-yr a 10-42
=== Neutrino floor in Xe (Billard) o
----- CRESST 11 2015 o aa
~-- CDMSLite 2015 s 10
—.= LUX 2017 Q N
O -
5 10746 1
c .7 ]
1 . 1
S 10748 . . \
= . neutrino-dominated \ -
; -” \__”"
10—50 |
10~1 100 10! 102 103 104 10°

WIMP Mass [MeV]
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Projected Sensitivity

Larger target mass (~ 100 kg) of superfluid helium, with lower

energy threshold (~ 10 meV) can push even lower in dark matter
mass and cross-section

== (.25eV, 1kg-yr

=== (.25 eV, 0.1 kg-yr

— .5 eV, 1kg-yr

m— 2.5 eV, 0.1 kg-yr

=== Neutrino floor in Xe (Billard)
CRESST 11 2015

-== CDMSLite 2015

LUX 2017

7/25/17

10~10
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g 10 o ‘b‘b ‘000\
= N &
5 10—20 é(\O\ é\"boc}éb
+ 7 9 &
] & 2 <
»n 10725 .0 o2 . standard
& & ° nuclear recoil
c10-30 ® ° (today’s calorimetry)
U L ]
610735 °. . \
@ . . \‘
[§] . R ”a
g 10740 . b S
S 10-45 CLA00KgY L aeenm oAt
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WIMP Mass [MeV]
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Superfluid helium readout via field ionization
(See arXiv:1706.00117)

Goal: an even more sensitive way to detect He atoms produced through
guantum evaporation, reaching energy sensitivity of 1 meV

A) Direct impact

B) Orbital capture
The polarization force draws helium to the

C) Surface diffusion tip, where the field gradient is highest.

D) Bouncing
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Superfluid helium readout via field ionization
(See arXiv:1706.00117)
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Summary and Outlook

Rising theoretical interest in low-mass dark matter
Lots of open parameter space, can be probed by small (inexpensive) experiments

Many proposed approaches, which is appropriate as the field discovers which
approaches work and which do not.

Much lower energy thresholds will bring new technical challenges, primarily
instrumental backgrounds.

Expect rapid development in this area!
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Helium-4 Nuclei: A Natural Match for Light Dark Matter Detection

Another view: maximum recoil energy for various targets, as a function of WIMP mass.

: I I IIIlII| I LA I llIIIIII I I IIIIII[ I Illli
10 Helium’s 3
- window of :
1= opportunity —
4 mi my %‘ - ]
max Erecoil = KEx é. a __ Xe _—
O - ]
here, o L _
vx = galactic escape velocity, 540 km/s w 102 _
nuclear form factors completely ignored x = 3
electron’s atomic state similarly ignored g - -
107 =
: | | | . [R.Lang] -

10~ 1072 107 1 10 . _ __ 10°

WIMP mass [GeV/c?]
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Why Superfluid Helium for Low-mass Dark Matter Detection?
(W. Guo and D. N. McKinsey, PRD 87, 115001 (2013).

* Kinematic matching with light dark matter candidates.
— Pull the energy depositions up in energy, to above threshold.

— Gain access to more of the WIMP velocity distribution, for a given energy
threshold.

e Superfluid helium offers multiple signals to choose from, and to separate
dark matter signal from backgrounds (both electron recoils and detector
backgrounds).

— Prompt light

— Delayed triplet excimers

— Charge

— Heat (roton and photon quasiparticles)
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Liquid helium-4 predicted response
(Guo and McKinsey, arXiv:1302.0534,
Phys. Rev. D 87, 115001 (2013).)

Lindhard factor
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Liquid helium has lower electron scintillation
yield for electron recoils (19 photons/keVee)

But, extremely high Leff, good charge/light
discrimination and low nuclear mass for
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Predicted nuclear recoil discrimination and signal strengths in liquid helium
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Deposit energy (keV)

0.14—
0

100 5

10+

Underway: Development of a NR light yield measurement

] | ) ] ) ] ) | L | L | L |

I ——28MeV
| ——153 keV

24 keV

5

10 15 20 25 30 35 40 45 30
Neutron deflection angle (°)

Scatter fast neutrons in LHe to
measure light yield (as we have
done previously in LXe, LAr, and
LNe). This is yet to be measured
in LHe!

Neutron sources available:

> DD neutron generator

o 2.8 MeVand 10°n/s
> 8Y_Be photoneutron

o 153 keV and ~103 n/s
> 1245ph-Be photoneutron

o 24 keV and ~103 n/s
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How to detect triplet helium molecules?

New demonstration: Transition Edge Sensor operated immersed in superfluid helium
See F. Carter et al, arXiv:1605.00694

Calorimetric observation of single He; excimers in a 100 mK He bath
F.W. Carter,2[*)|S.A. Hertel 342 M.J. Rooks,® P.V.E. McClintock,® D.N. McKinsey,>%2 and D.E. Prober’

The collection area here is just
the transition edge sensor itself
Microscopic. One (max)
excitation per recoil.

7/25/17
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Coincidence: prompt singlet photon

Non-coincidence: delayed triplet molecule
(+untagged photons)

Nal + LHe
PMT +TES

22
Na N .

<
511keV / 511keV

1.3MeV
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phonons R- R+

15
Phonon/roton .
reflectivities have -
complex energy and E .
angular dependence g’os | Evinang

Tanatarov et al, arXiv:1004.3497v1
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A mirrored box for heat collection

Analogy with light detectors, which collect scintillation light from a crystal or

scintillating liquid, using a reflector around the scintillator to efficiently steer the
light into a photomultiplier.

Here is a standard Nal detector, this one from Ortec:

905-16 Nal Scintillation Detector, 4- x 4-in. crystal, 3-in. tube
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\ XTAL LOADING ASSEMBLY
XTAL: 4" X 4" X 16" Nal(TI)

ALUMINUM HOUSING 0.032" THICK




Discrimination based on electronic excitation/heat ratio:

G. Seidel:

S. Hertel:
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Discrimination without electronic excitations?

For very low energies, electronic excitations are heavily suppressed. Need to
move to a scheme that doesn’t rely on electronic excitations, only heat.

How to get particle identification without electronic excitations?

Possibly could look at roton/phonon ratio, or more generally the momentum
distribution of the quasiparticles. Given that ER and NR have different dE/dXx,
it’s quite plausible that they give different quasiparticle distributions. Higher
dE/dx should result in a more thermalized (colder) quasiparticle distribution.

7/25/17 D. McKinsey = New DM Technologies
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Projected sensitivity to keV-scale dark matter particles

Sensitivity to DM via a Massive Mediator Sensitivity to DM via a Light Mediator
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Liguid helium cryostat at UC Berkeley

> Cools down to ~1.5 K
“He is superfluid below ~

Commercial
He gas

R X 1K pot pump line —
J:L ':®:| He gas recovering line — |
He \;,%'I‘.E == Roughing pump line — |
1K pot — Vacuum —
Iinepo port
He fill e i
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&
C
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| — %
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4He scintillation normal

versus superfluid
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Light detection with PMTs, operating in superfluid helium

Tube Type R8520-06 MOD Max. QE. 16.3 %

100

-
o

Quantum Efficiency [%)]

Photocathode Radiant Sensitivity [mA/W]

0.1

Wavelength of max. 340 nm

Figure 3: Dimensional outline (Unit: mm)
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> Pt underlay to avoid positive charge accumulated
in cathode

- Photocathode Radiant Sensitivity
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.......................................

> Demonstrated to work at milli-Kelvin temperature

> Pt underlay decreases QE
O 16% with Pt versus 30% in XENON100
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Helium cell design

> Mechanical mounting for the panel with TPB deposited

> A cube has 8 vertices, 6 panels x 2 = 12.
O 8<12. Cannot use diagonal. Off-diagonal design.

> Thickness of panels
O 0.5 mmin PMTs in helium scenario
O 2mmin PMTs in vacuum scenarios
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How low of an energy can be probed?

Electron recoil Nuclear recoil
(excited by electron) (excited by neutron)
Light yield (photons/keV) 22 9@ ~1keV,,

(predicted prompt
section, Ito 2013)

TPB conversion efficiency 1.35

Light collection efficiency 0.5

PMT quantum efficiency 0.14

Photoelectrons/keV 2.1 0.85

Aim for a few keVnr with this setup. The next experiment will use transition edge sensor
readout at < 100 mK temperatures, with ~ 100% quantum efficiency.



Simulations

PMTs in liquid helium (submerged) or in
vacuum
o Submerged scenario: More dead
helium, thinner acrylic panel
O Vacuum scenario: Less dead helium,
thicker acrylic panel

Normalized Distributions
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* No big difference in recoil spectrum
2F | ' * Technically easier to implement design
10 | L [ e » with PMTs submerged in liquid helium.
| .
\

0 | | | | |
0.00 0.01 0.02 0.03 0.04 0.05 0.06
MeV



