Dark Matter Searches at the LHC

Kristian Hahn Northwestern University on behalf of the ATLAS & CMS Collaborations

Topics in Astroparticle and Underground Physics TAUP 2017, Sudbury ON, Canada July 25, 2017

Complementary capabilities for observing DM interactions

Collider Production

Direct Detection (DD) DM-Nucleon Scattering Indirect Detection (ID) DM annihilation

WIMP DM falls under the LHC "lamppost" ...

• DM as a thermal relic implies weak-ish mass/interaction scales

Some of the benefits of collider searches:

- Excellent control of systematic uncertainties
- No velocity / p-wave suppression
- Possible resonant enhancement
- Possibility to characterize DM particle properties

Many BSM models provide DM candidates

- Eg: SUSY (nMSSM, cMSSM, ...), UED/ADD, Little Higgs ...
- Large numbers of parameters, wide range of phenomenology

Can we take a more general approach?

- Perform broad searches based on general DM phenomenology
- Use "models" that are simple as possible, even if they are incomplete (eg: EFT \rightarrow)
- Turn as large a stone as possible ... mono-X!

Mono-X

Simplest mode of DM production *unobservable* @ LHC

Dark Matter is **DARK**

- Leaves no activity in the detector
- Nothing to trigger on / reconstruct above

DM must instead recoil against *something* to become "visible"

"Mono-X" (or "MET+X") includes "X" for viable detection

• X: quarks/gluons, photons, W/Z ...

Missing Transverse Energy (MET, E^{miss})

CMS

Non-interacting particles escape the detector

• Their presence inferred from energy/momentum imbalance

(Transverse) analog of nuclear recoil in DD ...

- Transverse → because final state particles can be lost in the beampipe
- E_{T}^{miss} = Negative vector sum of all visible pT

A well understood collider observable

Wide use in SM measurements

Modeling DM Collider Production

- Models used in the design and interpretation of DM searches
- Need to balance model complexity with predictive accuracy ...

Validity issues @ LHC .. cf: 1307.2253, 1308.6799

UV-complete Models

Too specific? Theory baggage?

Modeling DM Collider Production

- Models used in the design and interpretation of DM searches
- Need to balance model complexity with predictive accuracy ...

Modeling DM Collider Production

- Models used in the design and interpretation of DM searches
- Need to balance model complexity with predictive accuracy ...

Simplified models: capture kinematics, lack completion

- Pair-produced DM Dirac fermions, χ
- Massive DM ↔ SM mediator, on/off-shell production
- Couplings: vector/axial/scalar/pseudo
- Minimal flavor violation
- Minimal mediator width: couples only to SM and χ

Only four parameters: g_q, g_{DM}, m_x, M_{med}

LHC DM searches using simplified models/benchmarks from the LHC Dark Matter Forum: 1507.00966

Extraction of potential DM signals ...

In absence of excess: limit setting, model constraints

• NB: 95% CLs limits are standard in collider world

m(Med)-m(DM) plane: provides natural representation of collider results

- Results shown as limit on signal cross section or on signal strength ($\mu = \sigma_{obs} / \sigma_{th}$)
- Fixed gDM & gSM
- All model assumptions (eg: mediator & DM type) specified

Interpretation

Comparison of collider results with (in)direct detection

- Recent focus of LHC Dark Matter Working Group (DMWG)
- Developed recommendations for collider/non-collider comparison

Translate collider limits to $\sigma_{\text{DM-N}}$

& $\sigma\nu_{\rm rel}$, rather than reverse

- Avoid subtleties and assumptions involved in mapping DD/ID to collider
- DD: vector/scalar (SI) axial (SD) mediators
- ID: pseudoscalar mediators

Recommendations on presenting LHC searches for missing transverse energy signals using simplified *s*-channel models of dark matter

Antonio Boveia,^{1,*} Oliver Buchmueller,^{2,*} Giorgio Busoni,³ Francesco D'Eramo,⁴ Albert De Roeck,^{1,5} Andrea De Simone,⁶ Caterina Doglioni,^{7,*} Matthew J. Dolan,³ Marie-Helene Genest,⁸ Kristian Hahn,^{9,*} Ulrich Haisch,^{10,11,*} Philip C. Harris,¹ Jan Heisig,¹² Valerio Ippolito,¹³ Felix Kahlhoefer,^{14,*} Valentin V. Khoze,¹⁵ Suchita Kulkarni,¹⁶ Greg Landsberg,¹⁷ Steven Lowette,¹⁸ Sarah Malik,² Michelangelo Mangano,^{11,*} Christopher McCabe,^{19,*} Stephen Mrenna,²⁰ Priscilla Pani,²¹ Tristan du Pree,¹ Antonio Riotto,¹¹ David Salek,^{19,22} Kai Schmidt-Hoberg,¹⁴ William Shepherd,²³ Tim M.P. Tait,^{24,*} Lian-Tao Wang,²⁵ Steven Worm²⁶ and Kathryn Zurek²⁷

Recent ATLAS & CMS DM Results

I will show all MET+X searches in an LHC DM talk I will show all MET+X searches in an LHC DM talk I will show all MET+X searches in an LHC DM talk I will show all MET+X searches in an LHC DM talk I will show all MET+X searches in an LHC DM talk

Focusing on the hadronic search channels

- Monojet, tt/bb + DM, dijet
- In the simplified model framework, these provide most of the DM reach at the LHC

Complete list of recent results in the backups

Monojet

A generic & powerful DM search strategy at the LHC

- Assumes only that DM couples in someway to incoming quarks
- Require energetic recoiling jet to trigger detector

But no need to limit to a single recoiling jet ...

• The "monojet" search actually targets multijet + E_T^{miss} !

DM + hadronic decays of EWK bosons can also produce a multijet + E_{τ}^{miss} signature ... mono-V

- W/Z decay products will be **boosted** when DM recoil is significant
- Reconstruction algorithms can merge these into a ~small radius jet
- But can use jet grooming / substructure techniques to identify the underlying 2-prong nature

07/25/17

K. Hahn - Dark Matter at the LHC - TAUP 2

Monojet : general strategy

Selections define signal enriched regions (SR) in data

- Residual backgrounds in these regions from events in tails of E_{T}^{miss} kinematic distributions
- Associated SM theory uncertainties are typically large here ...

BG dominated control regions (CR) help constrain SM rates & kinematics in the SRs

 Augment precise calculations of EW processes with measurements!

35.9 fb-1 : CMS-PAS-EXO-16-048, 12.9 fb-1: JHEP 07 (2017) 014, 1703.01651

SR selection : large E_{T}^{miss} , $\geq 1 \text{ high-}p_{T} \text{ jet}, \Delta \phi > 0.5 \text{ radian}$

- Mono-V : p_T^{AK8} , $E_T^{miss} > 250 \text{ GeV}$, $m_{jj} 65-105 \text{ GeV}$, $\tau_{12} < 0.6$ ("n-subjettiness")
- Mono-jet : remaining events, $p_T^{AK4} > 100 \text{ GeV}, E_T^{miss} > 250 \text{ GeV}$

5 (categorized) SM control regions to constrain high- E_{T}^{miss} BGs

- Use observable analogues of the invisible SM processes
 - $Z(\mu\mu)$, Z(ee), $W(\mu\nu)$, $W(e\nu)$ + jets, high-stat γ +jet
- Subtract visible signatures \rightarrow hadronic recoil, a proxy for E_T^{miss}
- Use NLO QCD + NLO EWK calculations to translate rates + distributions in CRs into SR predictions!

Extract signal from combined likelihood fit to E_T^{miss} distributions

Uncertainties & correlations on transfer factors (see 1705.04664)

- Incorporated as nuisance parameters in the fit
- Pure QCD effects: scale/normalization, recoil shape pT dependence, cross section ratios
- Pure EWK effects: missing NNLO, unknown Sudakov logs, NLL Sudakov approximation
- Combined multiplicatively, nuisance added for possible non-factorization

Control regions fit simultaneously with the signal regions

 Excellent post-fit agreement in CRs

Data in signal region consistent w/ post-fit SM expectations ...

CMS Monojet / Mono-V

Limits on both spin-1 and spin-0 mediators

- Vector/Axial exclusion (this slide) up to 1.8 TeV
- Pseudoscalar (backup) up to 400 GeV

Reinterpret as invisible Higgs : BR($h \rightarrow inv.$) < 0.53 (0.4 exp.)

And recast as limits on SI/SD DM-nucleon cross section (1603.04156)

Low-mDM reach complementary to direct detection!

ATLAS Monojet

36.1 fb-1 : ATLAS-CONF-2017-060, 3.2 fb-1: PRD 94 (2016) 032005, 1604.07773 Similar monojet search strategy pursued in ATLAS:

- p_T^{AK4} , $E_T^{miss} > 250 \text{ GeV}$, $\Delta \phi > 0.4 \text{ radian}$, vetos
- Simultaneous binned likelihood fit to E_{τ}^{miss}
- No mono-V category, dedicated mono-W search
- No Z(ee) + jets, γ+jets CRs, adds ttbar CR

[GeV]

É

Good agreement in Z(II)+jets & W(Iv)+jets control regions

ATLAS Monojet

And good agreement in the signal region ...

K. Hahn - Dark Matter at the LHC - TAUP 2

22

ATLAS Monojet

Limits on both spin-1 and spin-0 mediators

- Axial-vector exclusion up to 1.55 TeV
- Not yet sensitive to pseudoscalars

ttbar + DM

Monojet drives sensitivity to spin-1 mediator scenarios

- Picture more nuanced for spin-0 models ...
 - MFV \rightarrow mediator has Yukawa coupling
 - Monojet through heavy quark loops
- Implies tree-level couplings to top and bottom
 - Same mediator as in monojet
 - Yukawa enhancement → tt+DM competitive with monojet at low mMed!
- Can also anticipate a "monotop" signature ...
 - Assumes specialized signal model (see backup)

DM+ heavy quarks = rich signatures!

- tt final states: all-hadronic, semileptonic, dileptonic
 - Produces leptons, high-pT jets, b jets, E_T^{miss}
- Many experimental handles → many viable DM search strategies

Backgrounds : mostly SM ttbar (with a lost lepton), single top, ttV

ATLAS tt/bb + DM

p

p

SUSY stop searches also looking for the $tt+E_T^{miss}$ signature

- These generally involve many SRs & CRs to explore wide range of SUSY scenarios
- Leverage SUSY observables (eg: mT2) optimized for selecting E_{T}^{miss} from decays of heavy particles
- Extend SUSY search with regions that target DM production, add DM interpretation

ATLAS tt/bb + DM

ATLAS-CONF-2016-086 (13.3 fb-1)

Dedicated bb+E_T^{miss} search

- Sensitive to models (eg: 2HDM w/ large tanβ) in which coupling to down-type quarks enhanced
- Select events with large pT imbalance between 2 high-pT b-tagged jets
- 3 CRs to control Z+jets, W+jets and ttbar

ATLAS-CONF-2017-037 (36.1 fb-1) Update: tt(semileptonic)+E_T^{miss} search

- DM categories provide sensitivity to low (~20 GeV) and high (~300 GeV) mass DM mediators
- New SRs use boosted top-tagging discriminant to identify hadronic decays of high-pT top quarks
- ttbar normalized via CR fit, signal extraction from 3 bin cut & count analysis

ATLAS tt/bb + DM Limits

K. Hahn - Dark Matter at the LHC - TAUP 2

CMS

ATLAS tt/bb + DM Limits

07/25/17

K. Hahn - Dark Matter at the LHC - TAUP 2

CMS

2.2 fb-1 : 1706.02581, CMS-PAS-EXO-16-005, CMS-PAS-EXO-16-028

Combined search using all $tt+E_{T}^{miss}$ and $bb+E_{T}^{miss}$ channels

- $E_T^{miss} > 200$ for bb & all-hadronic tt, $E_T^{miss} > 160$ GeV for semileptonic tt, $E_T^{miss} > 50$ GeV for dileptonic tt
- Employs novel *resolved* top quark tagger to reconstruct low/moderate pT hadronic decays
 - Top pT is soft in for mediator masses for which there is LHC sensitivity
 - BG from SM tt with missing lepton
 - Categorize signal and bkg according to number of top tags
- Simultaneous E_T^{miss} fit using 8 SRs + 19 CRs

Search uses just 2.2 fb-1 from Run2

• Analysis of full 35.9 fb-1 in progress

0.0

0.5

RTT discriminant

-1.0

-0.5

1.0

CMS tt/bb + DM

bb signal region

Events / bin

10⁴

10³

10²

10 🚽

1

1.5 1.0

0.5

22

20

18

16

14

12

10

8 6

4

2

1.5 1.0

0.5

Obs / Fitted

200

Obs / Fitted

Events / bin

07/25/17

K. Hahn - Dark Matter at the LHC - TAUP 2

dileptonic eµ signal region

all-hadronic 01RTT signal

CMS tt/bb + DM Limits

Per-channel pseudoscalar

Full combination, pseudoscalar

07/25/17

31

If mediator couples to quarks, then also decay to SM particles

- Search for the DM mediators directly via traditional LHC "bump hunts"
 - Dijet (+ISR), dilepton, di-bjet, etc ... eg:

Dijet : 15.7 fb -1 ATLAS-CONF-2016-069, 27 & 36 fb-1 CMS-PAS-EXO-16-056 Dijet angular, 3.6 fb -1 (ATLAS) PLB 754 (2016) 302-322, 36 fb-1 CMS-PAS-EXO-16-046 Boosted dijet : 3.2 fb-1 (bjets) ATLAS-CONF-2016-031, 36 fb-1 CMS-PAS-EXO-17-001 Dilepton :: 36 fb-1 (ATLAS) 1707.02424, 2.9+19.7 fb-1 (CMS) PLB 768 (2017) 57

- New techniques (data scouting [CMS], Trigger Level Analysis [ATLAS]) allows searches to now push to lower mediator masses
- Dijet search results below ...

K. Hahn - Dark Matter at the LHC - TAUP 2

Comprehensive picture of LHC sensitivity to DM simplified models

• Axial-vector mediator shown here (see <u>ATLAS Exotica Summaries</u>)

Comprehensive picture of LHC sensitivity to DM simplified models

Axial-vector mediator shown here (see <u>CMS DM Summaries</u>)

CMS Preliminary

LHCP 2017

Summary

CMS Preliminary

CMS observed exclusion 90% CL

Robust program of E_{T}^{miss} +X DM searches at the LHC

Run 2 results pushing into new territory, limits on

- Multi-Tev spin-1 mediators
- Low-mass spin-0 mediators

Complementary strengths vs direct/indirect detection

On the horizon:

- Large bump in stats for several searches
- Stronger interplay between DM channels
- New methods for treating SM systematics (eg: arxiv: 1705.04664)
- Interpretations with somewhat-less-simplified models (eg: 1701.07427)

CMS mono-X Searches

X	Dataset	Documentation
jet + hadronic V	36.1 fb-1	EXO-16-048
photon	12.9 fb-1	1706.03794
Z(II)	35.9 fb-1	CMS-EXO-16-052
Higgs (γγ)	36.1 fb-1	CMS-EXO-16-054
Higgs (bb), with yy	2.3 fb-1	1703.05236
tt (hadronic + semileptonic + dileptonic) & bb	2.2 fb-1	1706.02581
t hadronic	36.1 fb-1	EXO-16-051

Direct Mediator Production	Dataset	Documentation
dijets	36.1 fb-1	CMS-EXO-16-056
dijets (angular)	36.1 fb-1	CMS-EXO-16-046
boosted dijets	36.1 fb-1	CMS-EXO-17-001
dilepton	13.1 fb-1	CMS-EXO-16-031

ATLAS Mono-X Searches

X	Dataset	Documentation
jet	36.1 fb-1	ATLAS-CONF-2017-060
photon	36.1 fb-1	EPJC 77 (2017) 393 1704.03848
W & Z (hadronic)	3.2 fb-1	PLB 763 (2016) 251
Z (leptonic)	36.1 fb-1	ATLAS-CONF-2017-040
Higgs (үү)	36.1 fb-1	1706.03948
Higgs (bb)	36.1 fb-1	1707.01302
tt (hadronic)	36.1 fb-1	ATLAS-CONF-2016-077
tt (semileptonic)	36.1 fb-1	ATLAS-CONF-2017-037
tt (dilepton)	13.3 fb-1	ATLAS-CONF-2016-076
bb	13.1 fb-1	ATLAS-CONF-2016-086
Direct Mediator Production	Dataset	Documentation
dijets	3.5+33.5 fb-1	1703.09127
dijet ISR	15.5 fb-1	ATLAS-CONF-2016-070
dijet TLA	3.4 fb-1	ATLAS-CONF-2016-030
dilepton	36.1 fb-1	ATLAS-CONF-2017-027

More CMS summary plots

More ATLAS summary plots

CMS Mono-top

Per-channel, scalar

Full combination, scalar

CMS tt/bb + DM Limits

Per-channel pseudoscalar

CMS

Full combination, pseudoscalar

SI/SD Translation

$$\begin{split} \sigma_{\rm SI}^0 &= \frac{9\,g_{\rm DM}^2\,g_q^2\,\mu_{n\chi}^2}{\pi M_{\rm med}^4} \\ &\approx 1.1 \times 10^{-39}\,\,{\rm cm}^2 \cdot \left(\frac{g_{\rm DM}\,g_q}{1}\right)^2 \left(\frac{1\,\,{\rm TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1\,\,{\rm GeV}}\right)^2 \\ \sigma_{\rm SD}^0 &= \frac{3\,g_{\rm DM}^2\,g_q^2 (\Delta_u + \Delta_d + \Delta_s)^2\,\mu_{n\chi}^2}{\pi M_{\rm med}^4} \\ &\approx 4.6 \times 10^{-41}\,\,{\rm cm}^2 \cdot \left(\frac{g_{\rm DM}\,g_q}{1}\right)^2 \left(\frac{1\,\,{\rm TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1\,\,{\rm GeV}}\right)^2 \end{split}$$

52

$$\begin{split} \Gamma_{\min}^{\mathrm{V}} &= \frac{g_{\chi}^2 M_{\mathrm{med}}}{12\pi} \left(1 + \frac{2m_{\chi}^2}{M_{\mathrm{med}}^2} \right) \beta_{DM} \theta(M_{\mathrm{med}} - 2m_{\chi}) \\ &+ \sum_{q} \frac{3g_{q}^2 M_{\mathrm{med}}}{12\pi} \left(1 + \frac{2m_{q}^2}{M_{\mathrm{med}}^2} \right) \beta_{q} \theta(M_{\mathrm{med}} - 2m_{q}), \\ \Gamma_{\min}^{\mathrm{A}} &= \frac{g_{\chi}^2 M_{\mathrm{med}}}{12\pi} \beta_{DM}^3 \theta(M_{\mathrm{med}} - 2m_{\chi}) \\ &+ \sum_{q} \frac{3g_{q}^2 M_{\mathrm{med}}}{12\pi} \beta_{q}^3 \theta(M_{\mathrm{med}} - 2m_{q}) \,. \end{split}$$

$$\begin{split} \Gamma_{\phi,a} &= \sum_{f} N_{c} \frac{y_{f}^{2} g_{q}^{2} m_{\phi,a}}{16\pi} \left(1 - \frac{4m_{f}^{2}}{m_{\phi,a}^{2}} \right)^{x/2} + \frac{g_{\chi}^{2} m_{\phi,a}}{8\pi} \left(1 - \frac{4m_{\chi}^{2}}{m_{\phi,a}^{2}} \right)^{x/2} \\ &+ \frac{\alpha_{s}^{2} y_{t}^{2} g_{q}^{2} m_{\phi,a}^{3}}{32\pi^{3} v^{2}} \left| f_{\phi,a} \left(\frac{4m_{t}^{2}}{m_{\phi,a}^{2}} \right) \right|^{2} \end{split}$$

$$f_{\phi}(\tau) = \tau \left[1 + (1 - \tau) \arctan^2 \left(\frac{1}{\sqrt{\tau - 1}} \right) \right],$$

$$f_{a}(\tau) = \tau \arctan^2 \left(\frac{1}{\sqrt{\tau - 1}} \right)$$