DEAP-3600 at SNOLAB – First Results and Future Plans

Mark Boulay
Carleton University
Queen's University
for DEAP-3600

DEAP-3600 Dark Matter Search

Liquid Argon for DM (Single-phase)

Scattered nucleus detected via scintillation in LAr

Good Pulse-shape discrimination between β/γ and nuclear recoils with scintillation

Argon is easy to purify

Very large target masses possible, no absorption of UV scintillation photons in argon, no pileup until beyond tonne-scale

Position reconstruction allows surface background removal, based on photon detection (~5 cm resolution allows removal of radon daughter events from analysis)

Very uniform and stable detector response

Mark Boulay

DM Sensitivity

1 tonne fiducial mass (3.6 tonnes total) designed for < 0.2 background events/year, 3 year run

Latest result is from XENON-1T May 2017

3600 kg argon in sealed ultraclean Acrylic Vessel (1.7 m ID)

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (Light Sensors)

50 cm light guides + PE shielding provide neutron moderation

Steel Shell immersed in 8 m water shield at SNOLAB

Máir Doulay

DEAP Collaboration: 75 researchers in Canada, UK, and Mexico

Canadian Nuclear Laboratories

Laboratoires Nucléaires Canadiens

DEAP Assembly at SNOLAB (2013-2016)

Background	Fiducial No. Events in Energy ROI – 3 live years
Neutrons	<0.2
Surface α's	<0.2
³⁹ Ar β's (natural argon)	<0.2

designed for 1-tonne fiducial mass 3 live years

Fabrication and Assay of DEAP Acrylic

- Fabrication from pure MMA monomer at RPTAsia (Thailand), strict control of radon exposure for all steps, to < 10⁻²⁰ g/g ²¹⁰Pb (RPT was fabricator of the SNO Acrylic Vessel)
- Assay of production acrylic < 2.2x10⁻¹⁹ g/g ²¹⁰Pb
 (Corina Nantais M.Sc. Thesis 2014, <0.2 bkg events/3 years)

Monomer cast at RPT Asia, 2010 Mark Boulay

Thermoformed Panel at RPT Colorado

Bonding light guides to the DEAP AV, underground at SNOLAB

Mark Boulay

Experimental Signatures

Calibrating DEAP-3600

Before liquid argon fill:

²³⁸U Decay Chain

Alpha Background Summary

- Measuring the ²²²Rn content in the bulk LAr shows the very competitive results
- Conclusion: ²²²Rn induced background within expectations

²²²Rn in Dark Matter experiments:

Experiment	Activity / rate	Target
DEAP-3600	≈0.2 µBq / kg	LAr ←
PandaX-II	6.6 µBq / kg	LXe
LUX	66 µHz / kg	LXe
XENON1T	10 μBq / kg	LXe

- PandaX-II: PHYSICAL REVIEW D 93, 122009 (2016)
- LUX: Physics Procedia 61 (2015) 658 665
- XENON1T: XeSAT 2017 talk [link]

- Majority (0.2 mBq/m²) of ²¹⁰Po decays on TPB - acrylic interface
- Indication (<2 mBq) of ²¹⁰Po in 80 µm acrylic bulk (green)

TVIAIR BOUIAY

Gamma and Beta Background

Dominant activities from screening or literature values (approximate)

Isotope	Location	Activity [Bq]	specific activity [mBq/kg]	Concentr ation [ppb]	
³⁹ Ar	LAr	3300	1010		
²³² Th	PMT glass	26	139	34	
238U	PMT glass	169	921	75	
⁴⁰ K	PMT glass	100	546	18	

PMTs: ²³²Th, ²³⁸U, ⁴⁰K

Steel shell: 60Co, ²³²Th, ²³⁸U

simulated background components

Gamma and Beta Background Model

Background Model in ER Band (0.2 < fprompt < 0.4) MC components scaled to radioassay data

- Empiric energy calibration based on 1460 keV (40K) and 2614 keV (208Tl) peak
- Scaling of MC simulations to known screening / literature values (this is not a fit)
- Low energy region (< 0.5 MeV) dominated by ³⁹Ar
- Mid energy region (0.5 2.6 MeV) dominated by gammas from outside components (mainly PMT glass)
- High energy region (> 2.6 MeV) dominated by ⁴²K and by close ²⁰⁸Tl sources

- Gamma line measurements can be used to constrain (α,n) neutron production within a factor of 2

Bjoern Lehnert's talk on Monday

Neutron Background

- Neutrons produced by
 - (α,n) reactions in close and far material
 - fission neutrons
 - cosmogenic neutrons (muon induced)
- Extensive neutron MC campaign using radio-purity assays and (α,n) yields from SOURCES-4C
 - Dominant source is (α,n) in PMT glass (≈70%)
 - Well constrained from γ -background and consistent with target values

Data driven limit on neutron interactions:

- Idea: Eventually all neutrons capture and leave gamma signature
 - 2.2 MeV γ form ¹H in acrylic
 - 6.1 MeV γ-cascade from ⁴⁰Ar in LAr
 - Search for n γ coincidences
- Preliminary result:
 - No coincidence found above expected random background
 - Limit on neutron interactions consistent with target value

See Shawn Westerdale's talk 5 PM today for details

DEAP-3600 detector filling

First analysis presented here from data collected in August 2016 at end of first LAr fill

August 17, 2016 Incident

Leak developed between Butyl o-rings and Steel Shell region

~100 ppb N₂ into LAr

Drained and refilled to slightly lower LAr level by October 2016

Continued collecting data at new level since Nov 1, 2016 – 3322 kg

Rn-scrubbed N2 gas in Steel Shell

Energy Calibration in DEAP-3600

low energy with external ²²Na feature

higher energies with 39 Ar and γ lines

Saturation effects at high energies not yet accounted for

WIMP ROI: $80 - 240 \, \text{PE}$

$$c_0 + c_1 \mathsf{PE} + c_2 \mathsf{PE}^2$$

Preliminary light yield:

$$LY = 7.36^{+0.61}_{-0.52} (\text{fit syst.}) \pm 0.22 (\text{SPE syst.}) \text{PE/keV}_{ee} \ @80 \, \text{PE}$$

Stefanie Langrock's talk Monday for details

Neutron calibration with AmBe source in DEAP-3600

- AmBe neutron source deployed outside of Steel Shell
- Detect neutrons and gammas from source (+ capture gammas)
- Used data for cross-check of simulation
- Simulation used to evaluate single-recoil response

Pulse-Shape Discrimination in DEAP-3600

We observe good PSD of beta events down to 11 keVee Best ever demonstrated at low energy expect to meet design goal for full sensitivity run

First Dark Matter Search with DEAP-3600 – 9,870 kg-days

	Cut	Livetime	Accepta	ance %	$\#_{\mathrm{evt.}}^{\mathrm{ROI}}$
run	Physics runs	8.55 d			
	Stable cryocooler	5.63 d			
	Stable PMT	4.72 d			
	Deadtime corrected	4.44 d			119181
rel	DAQ calibration				115782
ow level	Pile-up				100700
low	Event asymmetry				787
quality	Max charge fraction		99.58±0.01		654
	$\operatorname{per} \operatorname{PMT}$		33.00±0.01		004
	Event time		99.85 ± 0.01		652
	Neck veto		$97.49^{+0.03}_{-0.05}$		23
_	Max scintillation PE			$75.08^{+0.09}_{-0.06}$	7
cia	fraction per PMT			-0.06	'
fiducial	Charge fraction in			$90.92^{+0.11}_{-0.10}$	0
	the top 2 PMT rings			$90.92_{-0.10}$	
				1.0.00	
	Total	4.44 d	96.94 ± 0.03	$66.91^{+0.20}_{-0.15}$	0

4.44 live days

Selected ROI for < 0.2 leakage from β 's

Developed prelim. cuts for instrumental and external-source events

2223 kg fiducial mass

9,870 kg-day exposure

No events observed in ROI

Mark Boulay

WIMP exclusion with DEAP-3600

DEAP-3600 Continued Running and Plans

- Collecting DM and Calibration data since Nov 2016
- 82% DM search data
- Already collected ~220 days data, 20-40X first analysis depending on run selection (not yet completed). Will run until 2020.
- Developing model and understanding of all detector backgrounds for more sensitive analysis (incl. neck events, Cherenkov, etc.); full calibration of detector response incl. position reconstruction

Alpha Background Topologies

Beyond DEAP-3600: Sensitivity with Argon

Argon has good sensitivity in high-mass region

DS-20K (20 tonnes argon) competitive with LZ – start operation 2021

1000-tonne years (future detector) reaches down to neutrino floor

Complimentary to xenon – only other target allowing such large exposure

Global collaboration forming for future argon DM program (Darkside, DEAP, miniCLEAN, ArDM)

Summary

DEAP-3600 collecting data since 2016

This analysis used approximately 5 live days of data collected in August 2016:

- stable performance & good uniformity (~5% LY variation across detector)
- good light yield and good PSD best ever demonstrated at low threshold in argon and better than projected from DEAP-1
- preliminary analyses of internal background components full background model being developed
- $_{\odot}$ lowest achieved ^{222}Rn background of 0.2 $\mu Bq/kg$ (30 to 300X lower than PandaX, LUX, XENON1T)

No events observed in WIMP ROI allows best-ever limit on WIMP-nucleon cross-section at high mass in argon

Data collection ongoing; so far have collected approx. 0.6 M kg-days total exposure = 20-40X this exposure; will run to 2020

Beyond DEAP-3600:

Significant global collaboration for argon DM:

DS-20K at LNGS & future multi-hundred tonne detector

END