

Absolute neutrino mass

Topics in Astroparticle and Underground Physics TAUP, July 24-28, 2017, Sudbury, Canada

Christian Weinheimer

Institut für Kernphysik, Westfälische Wilhelms-Universität Münster weinheimer@uni-muenster.de

Introduction The KArlsruhe TRIitium Neutrino experiment KATRIN • overview & commissioning campaigns Possible improvements and neutrino mass beyond KATRIN • Electron capture with ¹⁶³Ho cryo bolometers • radio-based tritium β-spectroscopy: Project 8 Conclusions

Absolute Neutrino Mass, TAUP 2017 2

Three complementary routes to the absolute neutrino mass scale

um P(k)](h⁻¹ Mpc)^a]

1) Cosmology

very sensitive, but model dependent compares power at different scales current sensitivity: $\Sigma m(v_i) \approx 0.23 \text{ eV}$

2) Search for $0\nu\beta\beta$

Sensitive to Majorana neutrinos Limits by EXO-200, KamLAND-Zen, GERDA II, CUORE?

3) Direct neutrino mass determination:

No further assumptions needed, use $E^2 = p^2c^2 + m^2c^4 \Rightarrow m^2(v)$ is observable mostly **Time-of-flight measurements** (v from supernova) SN1987a (large Magellan cloud) $\Rightarrow m(v_e) < 5.7 \text{ eV}$ **Kinematics of weak decays** / β -decays measure charged decay products, E-, p-conservation β -decay searches for $m(v_e)$ - tritium, ¹⁸⁷Re β -spectrum - ¹⁶³Ho electron capture (EC)

 $E - E_{e}$ [eV]

. 0.5

Direct determination of $m(v_e)$ from β -decay (and EC)

$$\beta: dN/dE = K F(E,Z) p E_{tot} (E_0 - E_e) \Sigma |U_{ei}|^2 \sqrt{(E_0 - E_e)^2 - m(v_i)^2}$$

essentially phase space: $p_e E_e E_e E_v P_v \to EC$ at upper end is similar

with "electron neutrino mass": $\mathbf{m}(v_e)^2 := \Sigma |U_{ei}|^2 \mathbf{m}(v_i)^2$, complementary to $0v\beta\beta$ & cosmology

(modified by electronic final states, recoil corrections, radiative corrections)

Need: low endpoint energy very high energy resolution & very high luminosity & very low background \Rightarrow Tritium ³H (¹⁸⁷Re, ¹⁶³Ho)

⇒ MAC-E-Filter (or bolometer for ¹⁸⁷Re, ¹⁶³Ho)

The Karlsruhe Tritium Neutrino Experiment KATRIN - overview

Absolute Neutrino Mass, TAUP 2017 5

Molecular Windowless Gaseous Tritium Source WGTS

Molecular Windowless Gaseous Tritium Source WGTS

n

WGTS at Tritium Laboratory Karlsruhe

Calibration and monitoring rear system: controling and studying systematics

2nd containment

. n.c. magnets

egun

Essential for diagnostics of tritium source

& spectrometer transmission

- photo-electron gun:

spectrometer transmission column density & energy losses in source

- rear wall: definition of source potential, neutralization of tritium plasma

- X-ray detectors:

online monitoring of tritium ß-decay activity via X-rays (BIXS)

Rear Wall

magnet

Differential and cryo pumping sections: supression of T₂ by 10¹⁴ (incl. WGTS)

- active pumping: 4 TMPs
- Tritium retention: 10⁵
- magnetic field: 5.6 T
- Ion monitoring by FTICR and ion manipulation by dipole and monopole electrodes inside

- based on by cryo-sorption at Ar snow at 3-4 K
- Tritium retention: >10⁷
- magnetic field: 5.6 T

Monitoring and calibration instrumentation of the CPS

Electron rate monitor scanning small SD or PIN diode

Condensed ^{83m}Kr conversion electron source

for energy calibration and studies of transmission properties HOPG @T=25K, UHV, on HV, can scan full flux tube surface control: heating & laser ablation, laser ellipsometry

KATRIN spectrometers of MAC-E-Filter type

Commissioning of main spectrometer ($\Delta E = 0.93 \text{ eV}$) and detector

Background sources at KATRIN: detailed understanding, but ...

- 8 sources of background investigated and understood
- · 7 out of 8 avoided or actively eliminated by
 - fine-shaping of special electrodes
 - symmetric magnetic fields
 - LN₂-cooled baffles (cold traps)
 - wire electrode grids

 1 out of 8 remaining: caused by ²¹⁰Pb on spectrometer walls (neutral H* atoms ionised by black-body radiation in spectrometer)

Background due to ionization of Rydberg atoms sputtered off by α decays

H* Rydberg atoms:

- desorbed from walls due to ²⁰⁶Pb recoil ions from ²¹⁰Po decays
- non-trapped electrons on meV-scale
- bg-rate: ~0.5 cps

counter measures:

- reduce H-atom surface coverage:
 - a) extended bake-out phase: done
 - b) strong UV illumination source

Testing this hypothesis:

artifically contaminating the spectrometer with implanted short-living daughters of ²²⁰Rn

Technical start of KATRIN: "1st light", photo-electrons from rear wall & and ions

Testing whole 70m long beamline with electrons:

- alignment
- magn. stearing of pencil beam

With ions:

- ion removal

no tritium yet

July 2017: calibration and comissioning campaign with all 3^{83m}Kr sources

July 2017: calibration and comissioning campaign with all 3^{83m}Kr sources

Purpose of ^{83m}Kr measurements: calibration, alignment, systematics, HV

As smaller m(v) as smaller the region of interest below endpoint E_0 \rightarrow quantum mechanical thresholds help a lot !

A few contributions with $\Delta m_v^2 \leq 0.007 \text{ eV}^2$ each:

- dedicated e-gun measurements, unfolding of response fct.
- 2. fluctuations of WGTS column density (required < 0.1%)
 - rear detector, Laser-Raman spectroscopy, T=30K stabilisation, e-gun measurements

3. WGTS charging due to remaining ions (MC: ϕ < 20mV)

- monocrystaline rear plate short-cuts potential differences

4. final state distribution

- reliable quantum chem. calculations

5. transmission function

- detailed simulations, angular-selective e-gun measurements

6. HV stability of retarding potential on ~3ppm level required

- precision HV divider (with PTB), monitor spectrometer beamline

tritium source

spectrometer

As smaller m(v) as smaller the region of interest below endpoint E_0

 \rightarrow quantum mechanical thresholds help a lot !

3 yr of data taking

sensitivity on the neutrino mass (stat.+sys. uncertainties):

 \rightarrow 200 meV (design value)

Higher (Rydberg) background rate

 \rightarrow using larger data range (E₀-60 eV) and a bit less energy res.:

→ 240 meV (without further mitigation of the Rydberg background)

- 6. HV stability of retarding potential on ~3ppm level required
 - precision HV divider (with PTB), monitor spectrometer beamline

KATRIN will measure an ultra-precise β -spectrum \rightarrow search for physics beyond the SM

Sterile neutrinos

Can we go beyond or improve KATRIN ? Problems to be solved

The source is already opaque

 → need to increase size transversally
 magnetic flux tube conservation
 requests larger spectrometer too
 but a Ø100m spectrometer is not feasible

Possible ways out:

a) source inside detector (compare to $0\nu\beta\beta$) using cryogenic bolometers (ECHo, HOLMES, NuMECS)

ECHo neutrino mass project: ¹⁶³Ho electron capture with metallic magnetic calorimeters (MMC)

courtesy L. Gastaldo

Current status of ECHo

- Independent ¹⁶³Ho Q_{EC} measurement $Q_{EC} = (2.833 \pm 0.030_{stat} \pm 0.015_{sys}) \text{ keV}$

- High purity ¹⁶³Ho source has been produced
- ¹⁶³Ho ions have been successfully implanted in offline process @ISOLDE-CERN in 32 pixels @RISIKO in 8 pixels @RISIKO in 64 pixels
- Large MMC arrays have been tested and microwave SQUID multiplexing has been successfully proved
- New limit on the electron neutrino mass is approaching

courtesy L. Gastaldo

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0+	5/2-	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	Ho163	Ho164	Ho165
25.0 m 5+	7/2-	13.0 m	1/2-	1+	7/2-
EC	EC	EC	EC	EC,β-	100

ECHo neutrino mass project: timeline

Prove scalability with medium large experiment ECHo-1K (2015-2018)

- total activity 1000 Bq, high purity ¹⁶³Ho source (produced at reactor)
- ΔE_{FWHM} < 5 eV
- τ_{rise} < 1 µs
- multiplexed arrays \rightarrow microwave SQUID multiplexing
- 1 year measuring time 10^{10} counts \rightarrow neutrino mass sensitivity m < 10 eV
- Data taking will start in August 2017

Future: ECHo-10M sub-eV sensitivity

In addition: high energy resolution and high statistics ¹⁶³Ho spectra allow to investigate the existence of **sterile neutrinos** in the eV-scale and keV-scale

courtesy L. Gastaldo

HOLMES: ¹⁶³Ho implanted in Au absorber with transition edge sensor (TES) readout

Christian Weinheimer

MÜNSTER

Absolute Neutrino Mass, TAUP 2017 26

HOLMES: frequency multiplexing

• chip **µMUX17A**

- 33 resonances in 500 MHz
 - width 2 MHz
 - separation 14 MHz
- squid noise $< \approx 2 \mu \Phi_0 / \sqrt{Hz}$

courtesy A. Nucciotti

HOLMES: timeline

Project Year	2015	2016		2017		2018	
Task	S 2	S1	S 2	S1	S2	S1	S 2
Isotope production					÷		
TES pixel design and optimization							
Ion implanter set-up and optimization							
Full implanted TES pixel fabrication							
ROACH2 DAQ (HW, FW, SW)							
32 pix array 6mo measurement					-		
Full TES array fabrication							
HOLMES measurement							

HOLMES project status:

- TES array and DAQ ready
- ion implanter setting up is in progress
- first ¹⁶³Ho implantation coming shortly
- spectrum measurements will begin late in 2017
- \rightarrow 32 pixels for 1 month \rightarrow m_v sensitivity \approx 10 eV

courtesy A. Nucciotti

HOLMES: timeline

	Project Year 2015	2016	2017	2(2018	
Task	¹⁶³ Ho EC is being investigated by					
Isotope produc	ECHo, HOLMES, NuMECS					
TES pixel desig						
lon implanter s	Cryo-calorimetric multipixel detectors					
Full implanted	are a very interesting technology					
ROACH2 DAQ	→ starts to become scalable					
32 pix array 6				-		
Full TES array	Still many orders of	magnitude	e to go for	-		
HOLMES mea	required statistics	and back	ground !			
HOL	Understand EC de-e	xcitation s	pectrum ?			
- TE\$			·	e (Gerone	
- ion	Systematics and show	v stoppers	on the way?	la	У	
- first		etav tunn	ad I			
- spe		stay turing	5U :			
\rightarrow 32 pixels for 1 month \rightarrow m _y sensitivity \approx 10 eV						

Can we go beyond or improve KATRIN ? Problems to be solved

- The source is already opaque

 → need to increase size transversally
 magnetic flux tube conservation
 requests larger spectrometer too
 - but a Ø100m spectrometer is not feasible

Possible ways out:

- a) source inside detector (compare to 0vββ) using cryogenic bolometers (ECHo, HOLMES, NuMECS)
- b) hand-over energy information of β electron to other particle (radio photon), which can escape tritium source (Project 8)

Project 8's goal: Measure coherent cyclotron radiation of tritium β electrons

General idea:

B. Monreal and J. Formaggio, PRD 80 (2009) 051301

45000

• Source = KATRIN tritium source technology :

uniform B field + low pressure T₂ gas $\beta \text{ electron radiates coherent}$ cyclotron radiation $\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{K+m_e}$

But tiny signal: P (18 keV, θ =90°, B=1T) = 1 fW

• Antenna array (interferometry) for cyclotron radiation detection

since cyclotron radiation can leave the source and carries out the information of the β -electron energy

Project 8's phase 1: detection single electrons from ^{83m}Kr

"Bathtub" Trap

courtesy J. Formaggio, RGH Robertson Christian Weinheimer

25

Project 8's phase 1: detection single electrons from ^{83m}Kr

Absolute Neutrino Mass, IAUP 2017 33

Project 8's phase 2: Measure tritium beta spectrum

First detection of single electrons successfull

- tritium spectroscopy should start in August

see talks by W. Pettus (205) today

& by M. Guigue (190) on Thursday

but still a lot of R&D necessary

& other limitations?

- final goal: atomic tritium source

- Is a large scale experiment possible ?

- What are the systematic uncertainties

he Gas Pressure Rise

A. A. Esfahani et al. J. Phys. G 44 (2017) 5

1)

Can we go beyond or improve KATRIN ? Problems to be solved

 The source is already opaque
 → need to increase size transversally magnetic flux tube conservation requests larger spectrometer too but a Ø100m spectrometer is not feasible

Possible ways out:

- a) source inside detector (compare to 0vββ) using cryogenic bolometers (ECHo, HOLMES, ..)
- b) hand-over energy information of β electron to other particle (radio photon), which can escape tritium source (Project 8)
- c) make better use of the electrons
 by differential measurement instead of integral (measure all retarding voltage settings at once)
 - → differential detector, e.g. cryobolometer array (but 90mm diameter and multi Tesla field)
 - → time-of-flight spectroscopy, e.g. by electron tagging

→ Factor 5 improvement in m_v^2 by TOF w.r.t. standard KATRIN in ideal case ! *N. Steinbrink et al. NJP 15 (2013) 113020*

Conclusions

Direct neutrino mass experiments: complementary to cosmological analyses and $0\nu\beta\beta$ can look also for sterile neutrinos (eV, keV) and other BSM

KATRIN: direct neutrino mass experiment with 200 meV sensitivity

- System is complete (except tritium loops and rear wall and calibration system):
 - 1st light in October 2016, ^{83m}Kr calibration measurements in July 2017 successful

- Tritium data taking: start in 2018

KATRIN inauguration ceremony: June 11, 2018 (after Neutrino 2018 at Heidelberg)

Micro calorimeters experiments for ¹⁶³Ho EC

ECHo: technology ready, ECHo-1k will start in August 2017, ECHo-10M planned HOLMES: large progress: start data taking in 2018 NuMECS: similar technology

Project 8:

Spectroscopy of tritium β -deday by radio-detection of cyclotron radiation ^{83m}Kr measurements successful, first tritium R&D run in August 2017

Ptolemy:

R&D combining many leading technologies aiming to detect relic neutrinos: cryo bolometer, MAC-E-Filter-technology, tritium bound to graphene, ...