New Technologies for Gadolinium Loading Super-K

MATT MURDOCH

TAUP 2017 - NEW TECHNOLOGIES SESSION

2017/7/26

SK-Gd Overview

- •Add 100 tons 0.2% Gd₂(SO₄)₃ to SK
 - Use neutrons to tag $\bar{\nu}$
 - > 90% of neutrons capture on Gd
- First proposed by Beacom and Vagins
 - PRL93,171101 (2004)
- •New tech for new physics
 - Diffuse supernova background
 - Also improve existing signals

Challenges of Gd

- Add Gd while maintaining water transparency
 - New water circulation system
- •Avoid erosion of detector components
 - Use only resistant materials
- Remove Gd when necessary
 - Resin based Gd capture
- High radiopurity low contamination
 - Backgrounds for lowe analysis

EGADS

- •Evaluating Gadolinium's Action on Detector Systems
 - 200 ton, ~240 PMTS
 - 0.2% Gd₂(SO₄)₃
- Testbed for testing Gd technology
 - Runs in all configurations
 - Pure water & Gd water
 - With & without PMTs

•Currently taking data for > 2 years with PMTs at design Gd loading

Water transparency measurement device

Water System

- Molecular band pass system
 - Selects & retains Gd, removes impurities

Water Quality

•Success!

- •Maintains SK levels of water quality
- Great stability
- •No observable Gd₂(SO₄)₃ loss after 2 years at design loading
 - >500 complete circulations

New Water System for SK

Gd Removal

- •Need ability to remove Gd
 - Maintenance, end of experiment, etc.
- Pass water through cation ion-exchange resin
 - Simple and effective
- Tested several times in EGADS
 << 1ppm Gd₂(SO₄)₃ remains after treatment
- Enlarged system designed for SK

Resin removal system

EGADS Data

- •AmBe neutron source and Geant4 MC
 - Good agreement
- •Monitor detector response over time
 - Capture time sensitive to Gd concentration
 - Stable over time
 - No observable Gd loss
 - Cross check water quality

Preliminary	2015 Data	2016 Data		2017 Data		EGSIM
Efficiency (Gd n-capture)	84.2 ± 1 %	85.3 ± (0.7 % Prelim	85.3 ± 0	.9 %	84.4 ± 0.3 %
Lifetime (µs)	30.9 ± 0.4	31.1 ± (0.3	31.04 ±	0.4	31.06 ± 0.1

* N.B. Lower than expected SK efficiency due to neutron containment/small fiducial volume

SK-Gd

•EGADS demonstrated feasibility of Gd doped water Cherenkov technology

- •Based on the success of EGADS, plan to add Gd to SK
 - Planned $T_0 = 2018$
- •SK tank will be drained for repair work
 - Non-operational for 6-9 months
 - No Gd until after T1
- •Need some supernova contingency!

EGADS for Supernova

- •Repurpose EGADS as supernova detector
- •Employing Gadolinium to Autonomously Detect Supernovae
 - ~90,000 events for Betelgeuse SN
- •Replace old (old) ATM electronics
 - SK I, II, III
- •New (old) QBEE electronincs
 - SK IV
 - In SK since 2008

•Create 0 deadtime, autonomous supernova detector

QBEE Board

- •QTC Based Electronics with Ethernet
- •24 inputs (PMTs) per board
- •QTCs time to charge converters
 - 3 gain stages for high dynamic range
- •Multi-hit TDCs
 - Dead time free system
- •Ethernet readout daughter board
- •60MHz master clock supplies 60kHz global trigger to QBEEs

DAQ Upgrade

ATM

- •Significant deadtime
- •Hardware Trigger
 - Only hits in trigger window recorded
- •Capable of ~300 Hz readout
- Moderate dynamic range

QBEE

- •No deadtime
- •Software trigger
 - All hits recorded
- •Capable of >10 kHz readout
- •Large dynamic range (ATM x 5)

Upgrade Progress

- QBEEs installed
- DAQ being tested
 - Taking data
 - Finalising setup
- •Calibration campaign before physics data-taking

Cosmic ray in EGADS with QBEE electronics

Real Time Alert

- •Implement Intelligent Trigger system from SK
 - Real time event reconstruction
- •With Gd we can identify Inverse Beta events with low background
 - Prompt positron
 - Delayed neutron (~0-300 μs later)
- •Multiple IB events in 1ms can only be from a SN burst!
 - No need for cross-checks/human intervention
 - Autonomously alert within 1 s of neutrino arrival

Summary

•Viability of Gd doped Water Cherenkov technology demonstrated

• Developing several other new technologies on the way

•EGADS will now be repurposed to autonomously detect nearby supernova

Most advanced supernova detector

•Gadolinium revitalising a many decades young technology in pursuit of new physics

• While enhancing old searches

Backups

Radioisotope Reduction

•Significant contamination in untreated Gd powder

- In terms of backgrounds for low energy analyses
- Solar has most stringent requirements

•Reduction through:

- Pre-treatment by suppliers
- Removal via ion-exchange resins

Chain	Part of Chain	Typical (mBq/kg)	Goal (mBq/kg)	Analysis
²³⁸ U	²³⁸ U	50	< 5	DSNB
	²²⁶ Ra	5	< 0.5	Solar
²³² Th	²²⁸ Ra	10	< 0.05	Solar
	²²⁸ Th	100	< 0.05	Solar
²³⁵ U	²³⁵ U	32	< 3	Solar
	²²⁷ Ac/ ²²⁷ Th	300	< 3	Solar

Radioisotope Reduction - Pretreatment

- •Orders of magnitude reductions compared to typical sample
- •Goals met for U
- •Well on the way to Ra/Th goals

Chain	Part of	Typical	Goal	Company A	Company B	Company C
	Chain	(mBq/kg)	(mBq/kg)	(mBq/kg)	(mBq/kg)	(mBq/kg)
²³⁸ U	²³⁸ U	50	< 5	3	2.7	2.1
	²²⁶ Ra	5	< 0.5	< 9	< 0.6	< 0.3
²³² Th	²²⁸ Ra	10	< 0.05	< 5.9	< 0.7	< 0.3
	²²⁸ Th	100	< 0.05	< 5.9	0.9	< 0.4
²³⁵ U	²³⁵ U	32	< 3	< 35	< 3.1	< 0.6
	²²⁷ Ac/ ²²⁷ Th	300	< 3	< 35	< 6.1	<1.9

Radioisotope Reduction - U

Further U reduction demonstrated

- •Use Amberjet (AJ) 4400
 - Ion exchange resin
- Deployed & tested in EGADS
 - Initial loading 10 ppt
 - Reduces U to < 1% initial level
 - No Gd loss observed

BV = bed volume = ~150 litres of water

Radioisotope Reduction - Ra

- Use cation-exchange resin
 - Ra: DOWTEX Radium Selective Complexer (RSC)
 - Amberjet 1020
- DOWTEX Exchanges Na⁺ for Ra²⁺
 - AJ uses H⁺
 - Will absorb Gd³⁺
- •Replace Na/H with Gd
- Difficult to measure Ra directly
 - Measure daughter, Rn
- •New Rn system developed
 - Use Rn detector developed for SK
 - NIMA 867, pg 108-114, 2017
- Tests will begin shortly

Initial binding of Gd by the resin. Modified resins stop absorbing Gd after several BV