ANNIE Phase I and Plans for Phase II

R. Svoboda, UC Davis, TAUP 2017, Sudbury

The Accelerator Neutrino Neutron Interaction Experiment

The ANNIE Collaboration

A.R. Back³, J. F. Beacom⁴, M. Bergevin², E. Catano-Mur³, S. Dazeley², E. Drakopoulou¹⁰, F. Di Lodovico⁵, A. Elagin⁹, J. Eisch³, V. Fischer⁷,
H. Frisch⁹, S. Gardiner⁷, R. Hatcher¹, R. Hill⁹, T. Katori⁵, F. Krennrich³,
A. Kreymer¹, M. Malek¹¹, C. McGivern¹, M. Needham¹⁰, M. O'Flaherty¹¹,
G. Orebi-Gann⁶, B. Richards⁵, M.C. Sanchez ^{*3}, M. Smy⁸, R. Svoboda⁷, E. Tiras³, M. Vagins⁸, J. Wang⁷, A. Weinstein³, and M. Wetstein ^{†3}

¹Fermi National Accelerator Laboratory; Batavia, IL 60510, USA
²Lawrence Livermore National Laboratory; Livermore, CA 94550, USA
³Iowa State University; Ames, IA 50011, USA
⁴Ohio State University; Columbus, OH 43210, USA
⁵Queen Mary University of London; London E14NS, UK
⁶University of California at Berkeley; Berkeley, CA 94720, USA
⁷University of California at Davis; Davis, CA 95817, USA
⁸University of California at Irvine; Irvine, CA 92697, USA
⁹University of Chicago, Enrico Fermi Institute; Chicago IL 60637, USA
¹⁰University of Sheffield; Sheffield S10 2TN. UK

TWO GOALS:

- Measure the abundance of final state neutrons from neutrino interactions in water, as a function of energy and momentum transfer
- Demonstrate the use of fast, large format MCPs for event reconstruction in the GeV range

Neutrino-Nucleus interactions are complex and difficult to model

Effect of 2p-2h and stuck pions on events interpreted as QECC is significant

FS neutrons are an excellent indicator of inelasticity

GENIE 1 GeV monoenergetic v_{μ} beam with reconstructed energy from FS lepton reconstruction

ANNIE Physics Motivation

To turn neutrino physics into a precision science we need to understand the complex multi-scale physics of neutrino-nucleus interactions

- Dominant source of systematics on future long-baseline oscillation physics
- Possible source of uncertainty in shortbaseline anomalies
- We need comprehensive and precise measurement for a variety of targets/E_v

ANNIE is a final-state X + Nn program to complement X + Np measurements in LAr

The presence, multiplicity and absence of neutrons is **also** a strong handle for signal-background separation in a number of physics analyses!

ANNIE Physics Motivation

The presence, multiplicity and absence of neutrons is **also** a strong handle for signal-background separation in a number of physics analyses!

ANNIE Detector R&D

- A first application of Large Area Picosecond
 Photodetectors (LAPPDs) in a neutrino experiment
- Demonstrate operation of multiple LAPPDs, integrated with a larger hybrid detector system
 - LAPPDs are 8" x 8" MCPbased imaging photodetectors, with target specifications of:
 - ~50 picosecond single-PE time resolution
 - < 1 cm spatial resolution
 - > 20% QE
 - > 10⁶ gain
 - low dark noise (<100 Hz/ch)

- 1. CC interaction in the fiducial volume produces a muon, reconstructed in the water volume and MRD
- 2. Neutrons scatter and thermalize
- 3. 4. Thermalized neutrons are captured on the Gd producing flashes of light

ANNIE	Experimental					
	Table 3: Fiducial Ev	ent Cour	3	Year of R		
000000000000000000000000000000000000000		NC	CC	CCQE	CC-Other	
	All	11323	26239	13674	12565	a contraction of the contraction
	Entering MRD	2	7466	4279	3187	
	Stopping in MRD	2	4830	2792	2038	
	Fully Penetrating MRD	0	1454	761	693	
1. CC interact	Exiting Side of MRD	0	1181	726	455	ed in the water
volume and	MRD					

- 2. Neutrons scatter and thermalize
- 3. 4. Thermalized neutrons are captured on the Gd producing flashes of light

ANNIE Q² Acceptance

Figure 18: LEFT: The normalized Q^2 distribution for all events (red line) and for 2.5-ton fiducial events with muons ranging out in the MRD (blue line). RIGHT: The normalized E_{ν} distribution for all events (red line) and for 2.5-ton fiducial events with muons ranging out in the MRD (blue line).

It is important to measure neutron multiplicity as a function of these parameters and therefore we want a wide spread in neutrino energy and Q²

ANNIE Phase I: built, commissioned,

completed Phase 1 this month

- ANNIE Phase I received PAC approval in February 2015
- The detector was built by April of 2016
 - taking data by May of 2016
 - finished data taking July 2017

ANNIE Phase I:

- A measurement of potential background neutrons in ANNIE Phase II
 - rock neutrons
 - "skyshine"
- A Neutron Capture Volume (NCV) measures position dependent neutron rates
- Phase I enabled ANNIE to build and operate all the main components of the detector
- It also provided an opportunity to anticipate, understand, and mitigate major risks for Phase II

Phase I: background measurement

- the NCV was moved to 6 positions, scanning the neutron rates as a function of depth and distance from the beam
- strong suppression of skyshine neutrons was observed with increasing depth
- preliminary estimates based on measurements below the surface indicate neutron backgrounds in less than 2% of spills

Backgrounds are suppressed at depths > 50 cm and sufficiently low for Phase II

From Phase I to Phase II

- Finish refurbishing the muon range detector (reinstall paddles)
- Complete the tank inner structure
- Expand standard photocathode coverage w/ more PMTs
- Expand electronics channel count
- Add Gadolinium
- Add the LAPPD System

LAPPDs Are Ready for Phase II

Incom has now produced multiple LAPPD prototypes, quickly approaching the specifications needed by ANNIE

- Tile #9: fully sealed detector with an aluminum photocathode
- Tile #10: sealed detector with multi-alkali photocathode (~5 % QE)
- Tile #12: ~10% QE
- Tile #15: uniform photocathode >25% QE

ANNIE neutron capture efficiency

- The detector is large enough to fully contain neutrons
- Requested PMT coverage is sufficient to efficiently detect neutrons

Why ANNIE needs LAPPDs

LAPPDs provide needed vertex resolution to select fiducial events

More advanced reconstruction tools and techniques, as well as further MC production are under way

ANNIE Timeline

Completion of Phase II inner structure and tank lid

Electronics acquisitions

Reinstallation of inner structure and water fill

Introduction of Gd

Phase II data taking

Conclusions

- ANNIE will measure neutron production as a function of Q² in the ROI for long baseline experiments and proton decay, complementing proton production measurments.
- Phase I built and operated successfully. Backgrounds shown to be sufficiently low for Phase II
- LAPPDs exist and are on track to meet ANNIE requirements for Phase II, according to our simulations
- ANNIE Phase II has been recommended for approval by Fermilab PAC this month

Backup

Progress Towards Phase II

19 LUX PMTs

22 LBNE PMTs

LAPPD deployment

LAPPD housing

- We have in hand free large area PMTs to use for Phase II. Need only ~40 8in new ones
- New design for the LAPPD housing assemblies allows for LAPPDs to be installed into the already assembled detector
- PMT and MRD readout systems and DAQ are already working and expandable.
- The LAPPD, PSEC-4 readout system is largely complete

Phase I data sets

Table 2: Summary of Phase I data taken as of 12 June 2017. The triggering modes are **beam** for IRM triggers from the BNB, **source** for ²⁵²Cf calibration source triggers (see Sec. 2.3), **cosmic** for cosmic muon triggers, and **hefty** for beam data taken in the "Hefty mode".

	DAQ triggers by type					Approximate # of
NCV position	Beam	Source	Cosmic	Hefty	Total DAQ triggers	recorded beam spills
1	1.96×10^{6}	2.58×10^{5}	1.72×10^{4}	5.19×10^{3}	2.24×10^{6}	2.13×10^{6}
2	9.25×10^{5}	0.00	2.25×10^{3}	2.91×10^{5}	1.22×10^{6}	11.98×10^{6}
3	0.00	0.00	0.00	1.62×10^{5}	1.62×10^{5}	6.16×10^{6}
4	0.00	0.00	0.00	3.80×10^{4}	3.80×10^{4}	1.44×10^{6}

Figure 10: LEFT: Time distribution of NCV events (coincidences of both NCV PMTs) observed using the 252 Cf calibration source trigger with the NCV at position #1 with the trigger occurring at 2 μ s. RIGHT: Time distribution of NCV events from the same dataset after applying an analysis cut on the total integrated charge observed on the water tank photomultiplier tubes.

Figure 12: Comparison of the calibration source data (blue) with the results of a RAT-PAC simulation (red). The data histogram contains the same events as the right-hand panel in Fig. 10 (the same analysis cut has been applied), but it has been rebinned. The simulation histogram contains zero events in the first bin because the pre-trigger time region was not modeled.

LAPPD Fabrication and Testing

Figure 14: Working LAPPD prototypes from Incom.

Figure 16: LAPPD-12 installed in the ISU test stand.

LAPPD Fabrication and Testing

Figure 15: TOP: LAPPD-15 QE map at 3 days (LEFT) and 32 days (RIGHT) after sealing. BOTTOM: The average QE at 375 nm remains at 30%, with a maximum 35% and minimum of 22%.

LAPPD Fabrication and Testing

Figure 17: TOP LEFT: Example of single photoelectron pulses from LAPPD-9. TOP RIGHT: The single-PE gain distribution of LAPPD-9. BOTTOM LEFT: Several example multi-PE pulses from LAPPD-12, acquired using the PSEC front end readout. BOTTOM RIGHT: The multi-PE TTS distribution measured using the ISU test stand. The 30 psec sigma and non-Gaussian shape is due to the limitations of the laser, which should be sufficient for characterizing 50 psec photosensors.