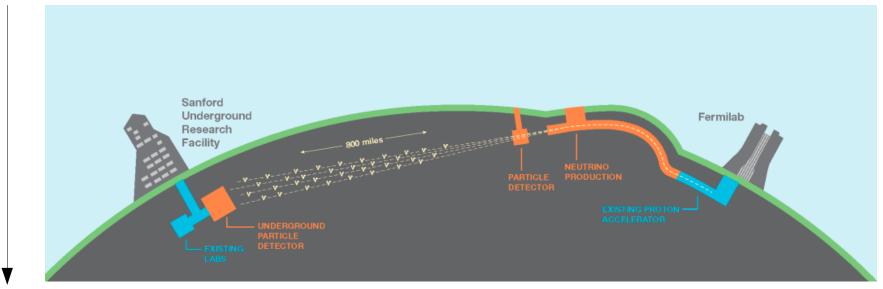
DUNE: the Far Detector

Ernesto Kemp – on behalf of DUNE collaboration kemp@ifi.unicamp.br TAUP 2017 Sudbury – Canada July/26/2017



Université Laurentienne Laurentian University

DUNE mission and concept

- What is the origin of the matter-antimatter asymmetry in the universe?
- What are the fundamental underlying symmetries of the universe?
- Is there a Grand Unified Theory of the Universe?
- How do supernovae explode? New physics from a neutrino burst?

- New neutrino beam facility at Fermilab
- A highly capable Near Detector at Fermilab to measure the unoscillated neutrino spectrum and flux constraints
- A large LArTPC deep underground at SURF (Lead (SD) 1300 km baseline) to measure oscillations and non-beam physics
- Exposure of ~10 years to v / \overline{v} modes (50% / 50%)

DUNE Collaboration

00000 66

< - M

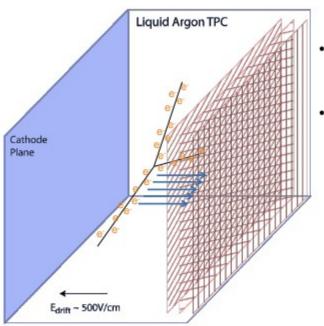
From July/10/2017:

964 Collaborators162 Institutions30 Nations

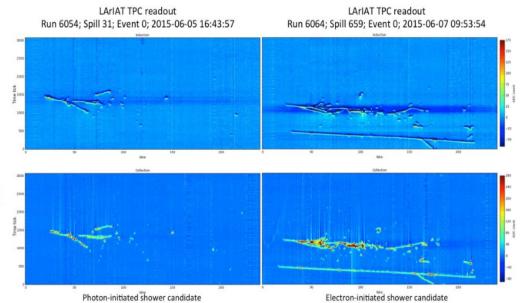
Sanford Underground Research Facility - SURF

The US is keeping open the use of Homestake (SD) for v, DM & 0vββ

- External Buildings and shaft access
- Halls @ 1480 m deep
- Majoron (0vββ) and LUX (DM) experiments

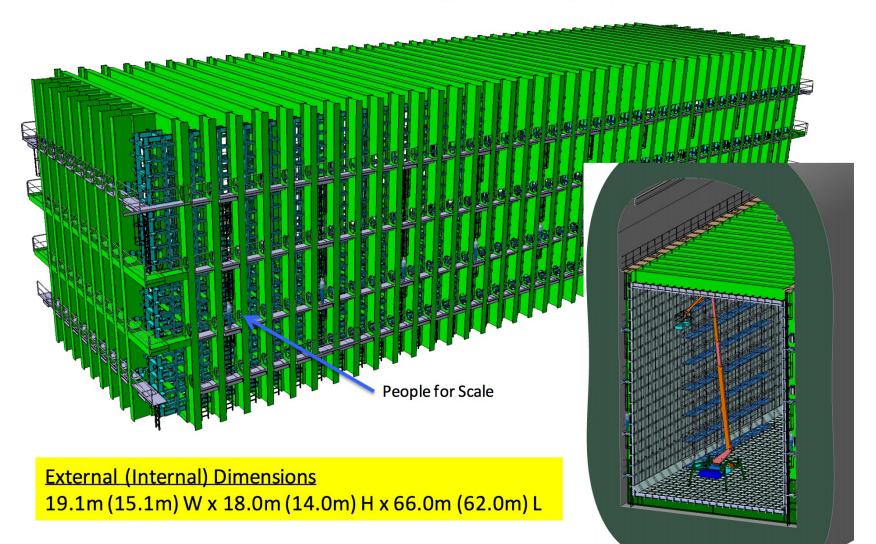


 Layout of underground experimental hall


More details on Jaret Heise's next talk

LArTPC: the Far Detector technology

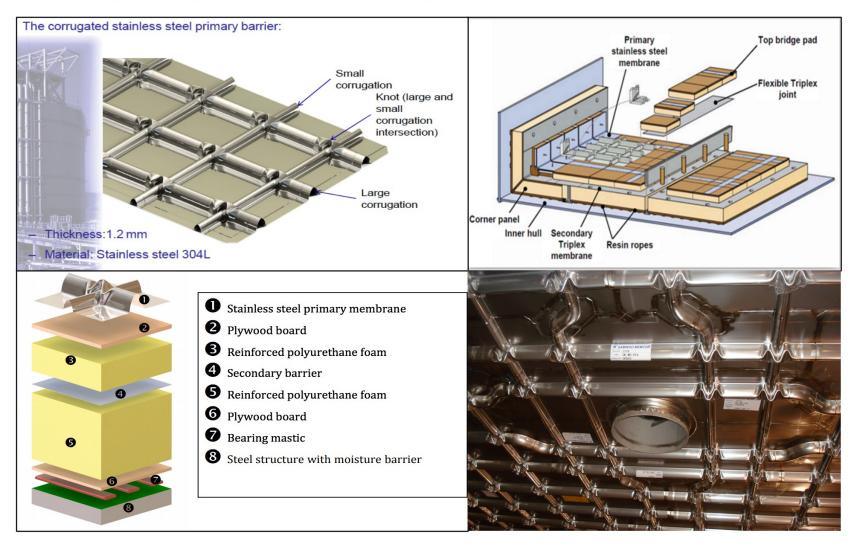
- Ionization charge drifts to finely segmented collection planes.
- Scintillator light detected for drift time.



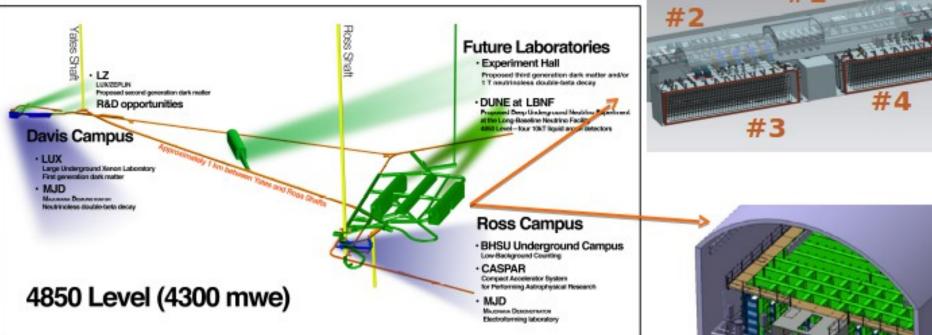
Electron-initiated shower candidate

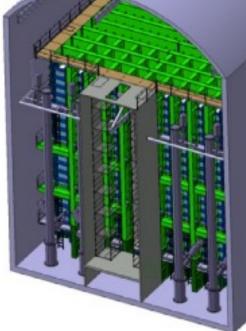
- High resolution data.
- High event selection efficiency and excellent background rejection.

Far Detector: LArTPC


Free-Standing Steel Cryostat

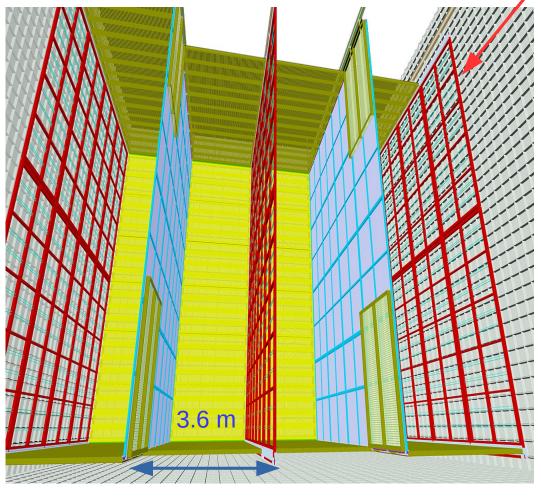
Far Detector: LArTPC


Design Scope – Membrane Cryostat

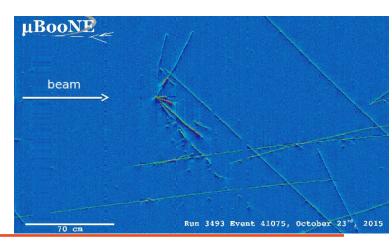


DUNE Far Detector at SURF

10 kton each in staged deployment strategy

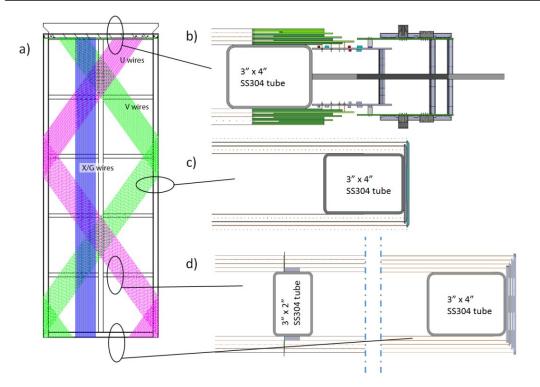


- The first module will be a single phase TPC (live in 2024). Its design is mature and the basis for the engineering prototype at CERN
- Subsequent modules can incorporate design changes that are demonstrated by ongoing R&D efforts, including a dual phase TPC option

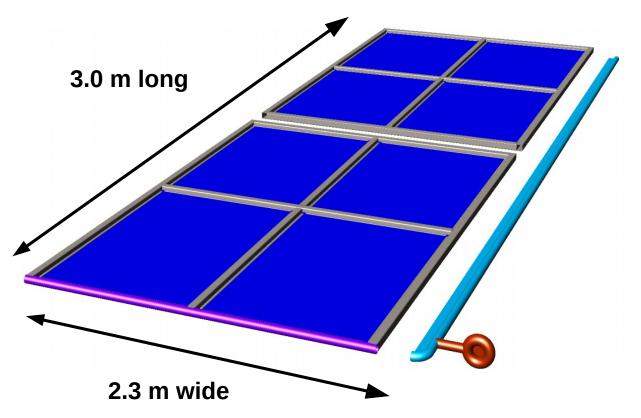

Far Detector: LArTPC

mm spatial resolution ____

- Anode Plane Assemblies

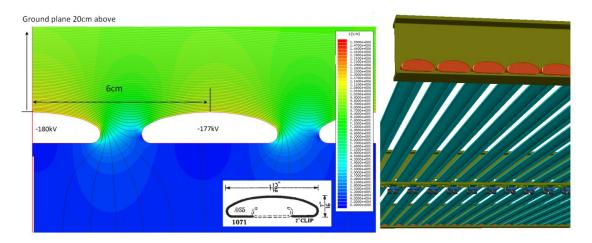

 (APAs) with three instrumented wire planes on each side (one collection and two induction) to readout ionization charge
- Drift field of 500 V/cm (cathode planes: 180 kV)
- Four drift regions 3.6 m each
- Photon Detection System (slide 17) integrated into APAs to measure (early) scintillation light for non-beam event timing

Far Detector: LArTPC - APAs


	Parameters of the four planes of wires on an APA						
Label	Function	Orientation (from vertical)	Pitch (mm)	Number	Bias Voltage (volt)		
G	Shield/grid plane	0 °	4.79	960	-655		
U	1^{st} induction plane	+35.7°	4.67	800	-365		
V	2 nd induction plane	-35.7°	4.67	800	0		
Х	Collection plane	0 °	4.79	960	+860		

Far Detector: LArTPC – CPAs

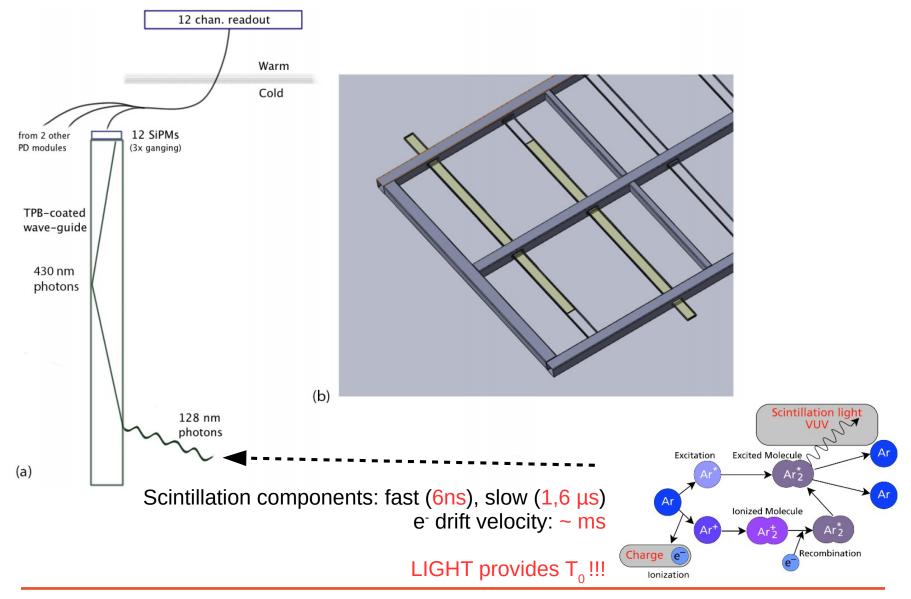
CPA: provides HV Stainless steel tiles and frame



Far Detector: LArTPC – Field Cage

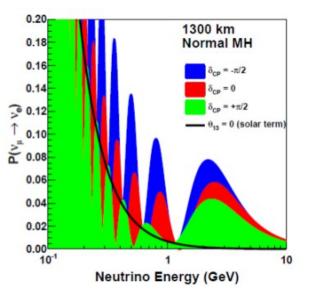
Field Cage: field shaping PCB structure

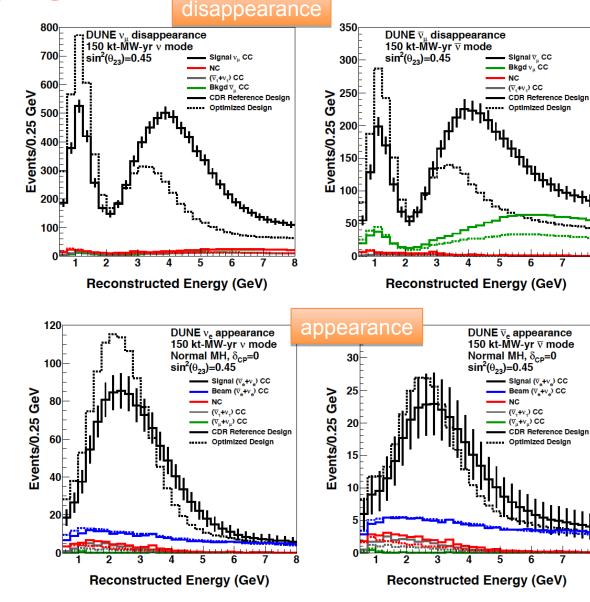
(picture from the corner of the 35 ton prototype)



Electric Field simulations showing a very good uniformity in a safe distance from the FC elements

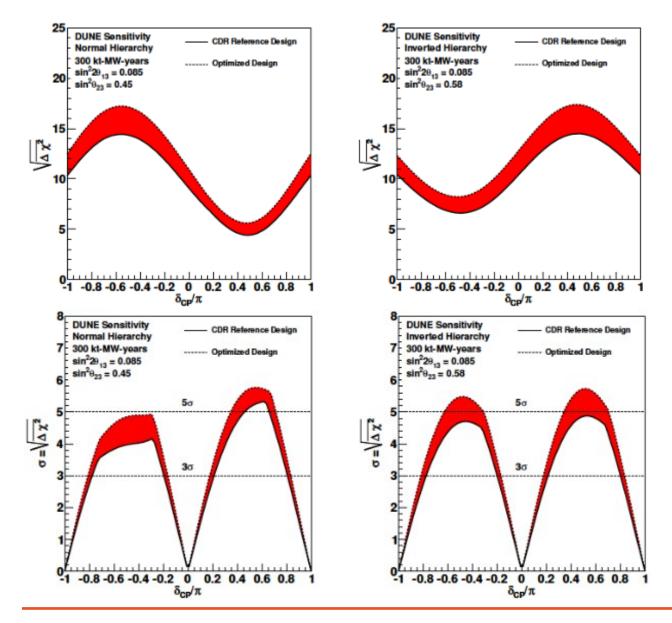
Far Detector: Photon Detection System


Far Detector TPC performance


arXiv:1601.02984

Expected Performance Parameter Requirement Achieved Elsewhere Signal/Noise Ratio¹ 10:1 [11, 12]² 9:19:1Electron Lifetime > 15 ms [12] $> 3 \,\mathrm{ms}$ $3\,\mathrm{ms}$ Uncertainty on Charge Loss due to Lifetime < 5%< 1%< 1% [12] Dynamic Range of Hit Charge Measurement $15\,\mathrm{MIP}$ 15 **MIP** Vertex Position Resolution³ (2.5,2.5,2.5) cm (1.1,1.4,1.7) cm [13, 14] $e - \gamma$ separation ϵ_e > 0.90.9 $e-\gamma$ separation γ rejection > 0.90.99 Multiple Scattering Resolution on muon momentum⁴ $\sim 18\%$ $\sim 18\%$ [15, 16] $\sim 18\%$ From LArIAT **Electron Energy Scale** $\sim 5\%$ $\sim 2.2\%$ [17] Uncertainty and CERN Prototype $0.33/\sqrt{E(MeV)}$ [17] $0.15/\sqrt{E(\text{MeV})}$ From LArIAT **Electron Energy Resolution** +1% $\oplus 1\%$ and CERN Prototype Energy Resolution for From LArIAT < 10%Stopping Hadrons and CERN Prototype Stub-Finding Efficiency⁵ > 90%> 90%

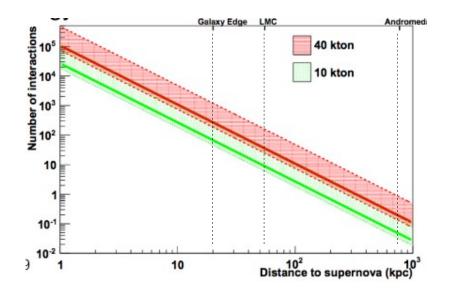
v's oscillations



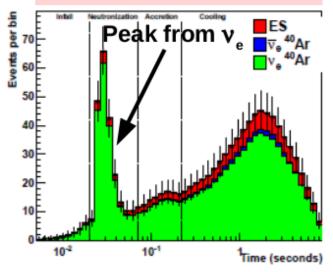
Simultaneous fit to extract MH and δ_{cP} (ν_{μ} , anti- ν_{μ} , ν_{e} , anti- ν_{e})

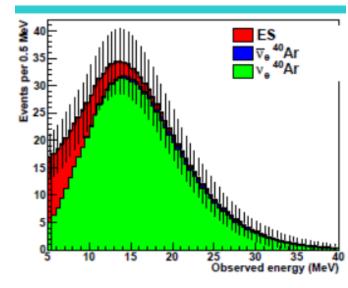
- Plots below assume normal MH and δ_{CP} =0
- Exposure: y 300 kTon*MW*years

Sensitivities: Mass Hierarchy and δ_{CP}



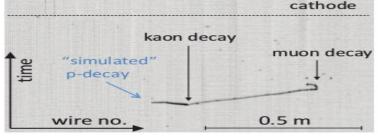
More details on Lisa Whitehead's talk



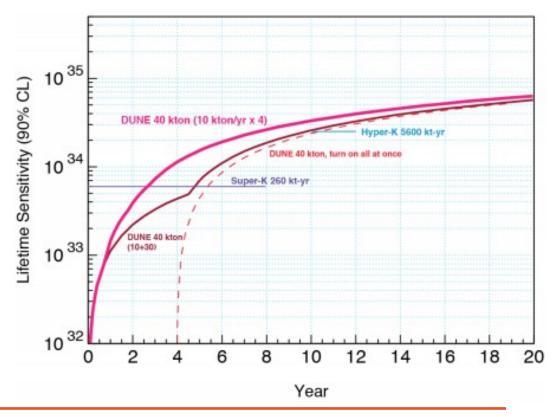

Supernova Detection

- Requires an efficient non-beam trigger
- Other experiments rely on v_{e} capture via inverse β -decay
- DUNE will be able to observe the $\nu_{_{e}}$ flux through capture on Ar40
 - Unique sensitivity to the electron flavor component of the flux
 - Provides information on time, energy and flavor structure
 - Rates depend on core collapse model, ν oscillation models, and distance.
 - Expect >3000 events from a supernova at 10 kpc

More details on Amanda Weinstein's talk



Baryon Number Violation: p-decay


Superior detection efficiency for K production modes

- K PID through dE/dx
- High spatial resolution and low energy thresholds

 → rejection atmospheric backgrounds
- High Efficiency (>90%), high purity selections for $p \rightarrow K^+ + \nu$ and $p \rightarrow K^0 + \mu^+$
- Requires efficient non-beam trigger (Ar scintillation early light)

Decay Mode	Water Cherenkov		Liquid Argon TPC		
	Efficiency	Background	Efficiency	Background	
$p \to K^+ \overline{\nu}$	19%	4	97%	1	
$p \rightarrow K^0 \mu^+$	10%	8	47%	< 2	
$p \rightarrow K^+ \mu^- \pi^+$			97%	1	
$n \rightarrow K^+ e^-$	10%	3	96%	< 2	
$n \rightarrow e^+ \pi^-$	19%	2	44%	0.8	

Timeline

- A 35t LarTPC prototype 2015.
- Full-scale prototype at CERN 2018.
- First 10kt LArTPC module (single phase) underground 2021.
- Choose technology for the 2nd, 3rd, 4th 10kt module.
- Collect FD data by 2024.
- Beam on by 2026.
- Finish a fine-grained tracker ND by 2026.
- Finish all construction by 2028.
- Reach an exposure of 120 kt.MW.years by 2035.

Conclusions

• DUNE will have: MW neutrino beam, highly-capable finegrained near detector, 40kt LArTPC deep underground at SURF (see Jaret Heise's talk).

- Clear plan has been made. Strong collaboration formed.
- Aim to solve neutrino mass hierarchy and CP-violating phase via oscillation measurement (see Lisa Whitehead's talk).
- Rich non-oscillation physics topics: proton decay, supernova, v interactions, and more (see Amanda Weinstein's talk).
- Many opportunities both for new collaborators and students.

Future is promising !!

Special credits for DUNE colleagues (comments and slides inspiration):

Jim Strait, Maury Goodman, Dan Cherdack, Mary Bishai, Michele Stancari, Hongyue Duyang, Bob Wilson, Gabriel Santucci, Thomas Kutter

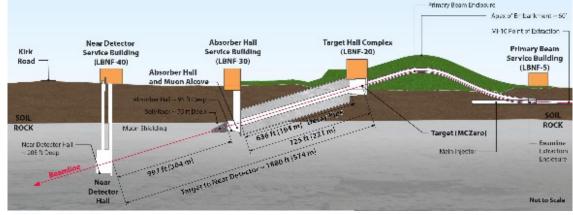
Main Content:

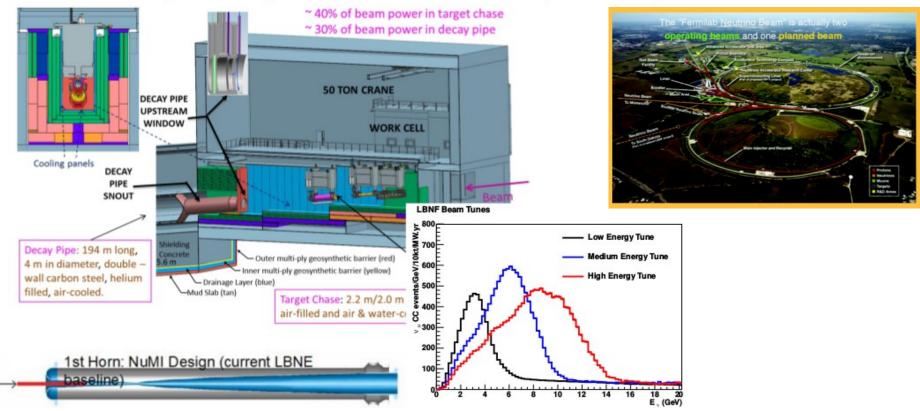
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) : Volumes 2 and 4 e-Print: arXiv:1601.02984 , arXiv:1512.06148

BACKUP

DUNE + LBNF

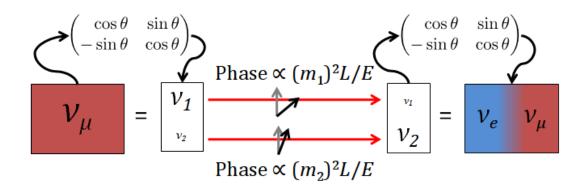
Detectors and science collaboration will be managed separately from the neutrino facility and infrastructure.


- LBNF(Long-Baseline Neutrino Facility):
 - Neutrino beamline.
 - Near detector conventional facilities.
 - · Far detector hall; conventional facilities.
- DUNE(Deep Underground Neutrino Experiment):
 - Far and near detectors
 - Scientific research program



٠

Beam: LBNF



Advanced conceptual design *tunable wide-band* NuMI-style focusing:

ν's oscillations

$$\begin{bmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \mathbf{c}_{23} & \mathbf{s}_{23} \\ 0 & -\mathbf{s}_{23} & \mathbf{c}_{23} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & 0 & \mathbf{s}_{13}\mathbf{e}^{-i\delta} \\ 0 & 1 & 0 \\ -\mathbf{s}_{13}\mathbf{e}^{i\delta} & 0 & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{12} & \mathbf{s}_{12} & 0 \\ -\mathbf{s}_{12} & \mathbf{c}_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{12} & \mathbf{c}_{12} & \mathbf{c}_{12} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{12} & \mathbf{c}_{12} & \mathbf{c}_{12} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13} & \mathbf{c}_{13} & \mathbf{c}_{13} \\ \mathbf{c}_{13} & \mathbf{c}_{13} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{13$$

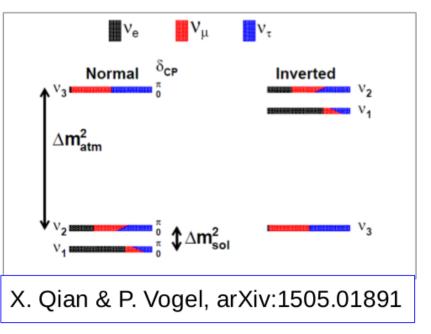
 $c_{13} = \cos_{\theta_{13}}; s_{13} = \sin_{\theta_{13}}$ \sin^2 $\sin^2 heta_{23}\sin^22 heta_1$ $P(
u_{\mu}
ightarrow
u_{e})$ \simeq $a = G_F N_e / \sqrt{2}$ $\Delta m_{ij}^2 L$ $+\sin 2\theta_{23}\sin 2\theta_{13}\sin 2\theta_{12}\overline{\sin(\theta_{13})}$ aL $\sin[aL$ Δ_{31} $\Delta_{21} \cos(\Delta_{31}$ Δ_{31} aLaL $\Delta_{ij} =$ $\sin^2[a]$ $+\cos^2 heta_{23}\sin^22 heta_{12}$ 4E

v's oscillations

What we do know:

$$\begin{bmatrix} |U_{e1}|^2 > |U_{e2}|^2 > |U_{e3}|^2 \end{bmatrix}$$

$$\Delta m_{sol}^2 \equiv \Delta m_{21}^2 \simeq 7.5 \times 10^{-5} \text{ eV}^2$$

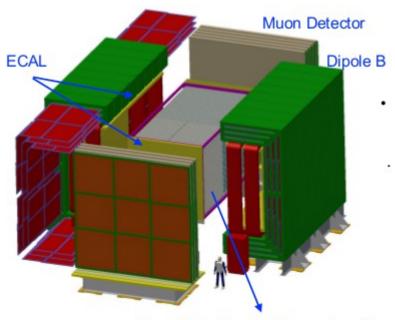

$$\Delta m_{atm}^2 \equiv |\Delta m_{32}^2| \simeq 2.5 \times 10^{-3} \text{ eV}^2$$

$$\sin^2 \theta_{21} \simeq 0.31$$

$$\sin^2 \theta_{23} \simeq 0.45 \text{--}0.55$$

$$\sin^2 \theta_{12} \simeq 0.02$$

Neutrino Mass Hierarchy


What needs to be determined:

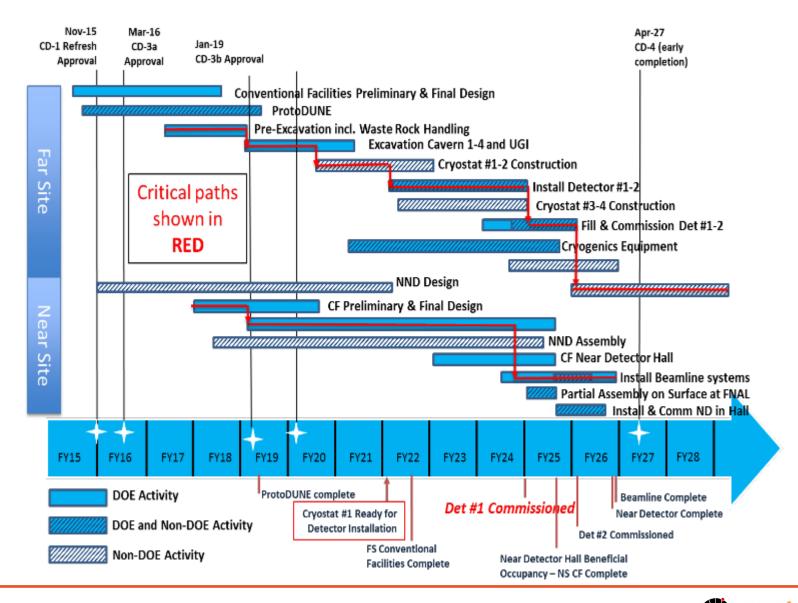
mass hierarchy (sign of Δm_{32}^2), θ_{23} octant (dominant flavor in v_3), CP violation in the lepton sector

Near Detector

- ND goals:
 - Constrain systematics to the v_e appearance measurement.
 - Precision physics measurements on its own.
- Alternative designs:
 - LArTPC
 - High-Pressure Argon Gas TPC
 - · Hybrid detector.

Straw Tube Tracker (Argon target)

The reference design: High Resolution Fine-Grained Tracker.


- ~3.5m×3.5m×6.5mSTT ($\rho \approx 0.1 \text{ g/cm}^3$).
- 4π ECAL in a dipole magnetic field (B = 0.4 T).
- 4π MuID (RPC) in dipole and up/downstream.
- Pressurized 40Ar target \approx ×10 FD statistics

Timeline

PDS design

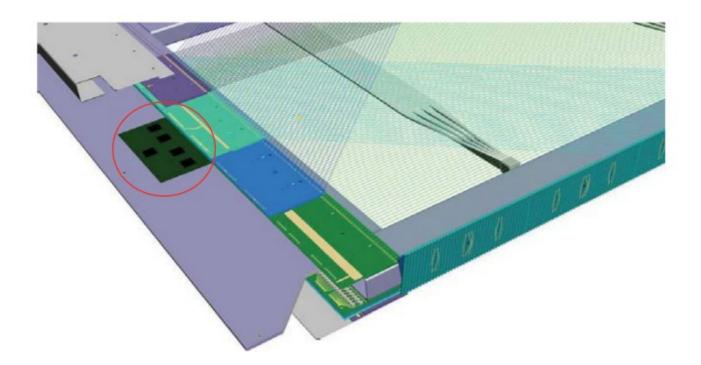
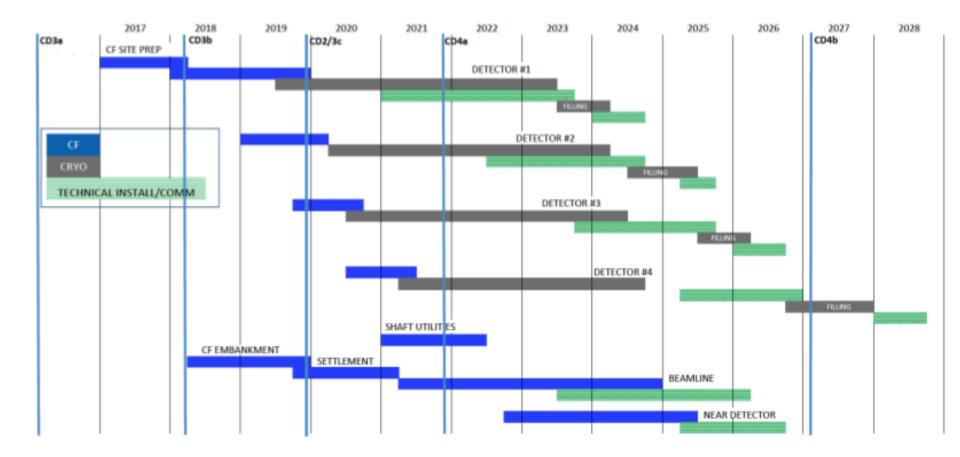


Figure 4.13: The front-end electronics, shown in the red circle, as mounted on an APA. (Note that this figure was not updated to show the current photon detection system scheme.)



Expected Signals

	CDR Reference Design	Optimized Design	
$ u$ mode (150 kt \cdot MW \cdot year)			
ν_e Signal NH (IH)	861 (495)	945 (521)	
$\bar{ u}_e$ Signal NH (IH)	13 (26)	10 (22)	
Total Signal NH (IH)	874 (521)	955 (543)	
Beam $ u_e + \bar{ u}_e$ CC Bkgd	159	204	
NC Bkgd	22	17	v
$ u_ au + ar u_ au$ CC Bkgd	42	19	
$ u_{\mu} + ar{ u}_{\mu} CC Bkgd $	3	3	
Total Bkgd	226	243	
$\bar{\nu}$ mode (150 kt \cdot MW \cdot year)			
ν_e Signal NH (IH)	61 (37)	47 (28)	_
$ar{ u}_e$ Signal NH (IH)	167 (378)	168 (436)	
Total Signal NH (IH)	228 (415)	215 (464)	3.0
Beam $ u_e + ar{ u}_e$ CC Bkgd	89	105	
NC Bkgd	12	9	, T
$ u_ au + ar u_ au$ CC Bkgd	23	11	
$ u_{\mu} + ar{ u}_{\mu} CC Bkgd $	2	2	
Total Bkgd	126	127	

Timeline

