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DUNE mission and concept
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✔ New neutrino beam facility at Fermilab 
✔ A highly capable Near Detector at Fermilab to measure the unoscillated neutrino

spectrum and flux constraints
✔ A large LArTPC deep underground at SURF (Lead (SD) 1300 km baseline) to

measure oscillations and non-beam physics
✔ Exposure of ~10 years to ν / ν modes (50% / 50%)
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● What is the origin of the matter-antimatter asymmetry in the universe?
● What are the fundamental underlying symmetries of the universe?
● Is there a Grand Unified Theory of the Universe?
● How do supernovae explode? New physics from a neutrino burst?



Content
Collaboration
• more text
- Sub-topic 1.1

• Sub-sub 1.1.1
- Sub-sub-sub topic 1.1.1.1

- Sub-topic 1.2
• Topic 2
• Topic 3
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DUNE Collaboration

From July/10/2017:

964 Collaborators
162 Institutions
30 Nations



Sanford Underground
Research Facility - SURF
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The US is keeping open the
use of Homestake (SD)  for 
ν, DM & 0νββ

● External Buildings and
shaft access

● Halls @ 1480 m deep
● Majoron (0νββ) and 

LUX (DM) experiments

● Layout of underground
experimental hall
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More details on Jaret Heise’s next talk



LArTPC: the Far Detector technology
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Far Detector: LArTPC
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Far Detector: LArTPC
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Content
FD
• more text
- Sub-topic 1.1

• Sub-sub 1.1.1
- Sub-sub-sub topic 1.1.1.1

- Sub-topic 1.2
• Topic 2
• Topic 3
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10 kton each in staged
deployment strategy
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Far Detector: LArTPC ● Anode Plane Assemblies
(APAs) with three instrumented
wire planes on each side (one
collection and two induction) to
readout ionization charge

• Drift field of 500 V/cm (cathode
planes: 180 kV)

• Four drift regions 3.6 m each 
• Photon Detection System

(slide 17) integrated into APAs
to measure (early) scintillation
light for non-beam event timing

3.6 m

mm spatial resolution
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Far Detector: LArTPC - APAs
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Far Detector: LArTPC – CPAs 
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2.3 m wide

3.0 m long

CPA: provides HV
Stainless steel tiles and frame
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Far Detector: LArTPC – Field Cage

E. Kemp | DUNE: the Far Detector

Field Cage: field shaping
PCB structure

(picture from  the corner of
the 35 ton prototype)

Electric Field
simulations showing a

very good uniformity in
a safe distance from the

FC elements



Far Detector: Photon Detection System

Scintillation components: fast (6ns), slow (1,6 µs)
e- drift velocity: ~ ms

LIGHT provides T
0 
!!!
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Far Detector TPC performance 
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arXiv:1601.02984
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• Simultaneous fit to extract
MH and dCP 
( nm, anti-nm, ne, anti-ne )

• Plots below assume normal
MH and dCP=0

• Exposure: y 300
kTon*MW*years

appearanceappearance

disappearancedisappearance
ν’s oscillations
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Sensitivities: Mass Hierarchy and δ
CP
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More details on Lisa
Whitehead’s talk
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 Supernova Detection
• Requires an efficient non-beam trigger
• Other experiments rely on ν

e
 capture via inverse β-decay

• DUNE will be able to observe the ν
e
 flux through capture on

Ar40
– Unique sensitivity to the electron flavor component of the
flux
– Provides information on time, energy and flavor structure
– Rates depend on core collapse model, ν oscillation
models, and distance.
– Expect >3000 events from a supernova at 10 kpc
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More details on 
Amanda Weinstein’s 
talk
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Baryon Number Violation: 
p-decay

18

Superior detection efficiency for
K production modes

● K PID through dE/dx
● High spatial resolution and low

energy thresholds 
   → rejection atmospheric
backgrounds

● High Efficiency (>90%), high purity
selections for 
p → K+ + ν and p → K0 + μ+

● Requires efficient non-beam
trigger (Ar scintillation early light)
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Timeline
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Conclusions
● DUNE will have: MW neutrino beam, highly-capable fine-
grained near detector, 40kt LArTPC deep underground at SURF
(see Jaret Heise’s talk).

● Clear plan has been made. Strong collaboration formed.

● Aim to solve neutrino mass hierarchy and CP-violating
phase via oscillation measurement (see Lisa Whitehead’s talk).

● Rich non-oscillation physics topics: proton decay, supernova, ν
interactions, and more (see Amanda Weinstein’s talk).

● Many opportunities both for new collaborators and students.

Future is promising !!
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Special credits for DUNE colleagues  (comments and slides inspiration):

Jim Strait, Maury Goodman, Dan Cherdack, Mary Bishai, Michele Stancari, 
Hongyue Duyang, Bob Wilson, Gabriel Santucci, Thomas Kutter

Main Content:
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) : Volumes 2 and  4 
e-Print: arXiv:1601.02984  ,  arXiv:1512.06148



BACKUP



DUNE + LBNF
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Beam: LBNF

24 E. Kemp | DUNE: the Far Detector



ν’s 
oscillations
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ν’s oscillations
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Near 
Detector
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ProtoDUNE



Timeline
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PDS design



Expected Signals



Timeline
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