SiPMs for DarkSide-20k

Graham Giovanetti Princeton University

From DarkSide-50 to DarkSide-20k

38 3" PMTs

13 m² of SiPMs

← ~35 cm →

Why transition from PMTs to SiPMs?

- Higher photo-detection
 efficiency
- Better single photon resolution
- Lower background
- Lower cost
- High dark rate
- Small area → large number of preamps/cables/ feedthroughs
- High capacitance per unit area

Why transition from PMTs to SiPMs?

- Higher photo-detection
 efficiency
- Better single photon resolution
- Lower background
- Lower cost
- High dark rate
 Small area → large number of preamps/cables/ feedthroughs
- High capacitance per unit area
 Group

Group the SiPMs and contend with

Pulse shape discrimination in liquid argon

Phys. Rev. D 93 081101, 2016

Requirements for DS-20k photodetector modules

pulse shape discrimination

- Detection efficiency > 40%
- Timing resolution < O(10) ns
- Dark rate + <u>noise trigger</u> rate
 < 0.1 Hz/mm²
 SNR > 7

practical constraints

- Operation at 87 K
- $5 \times 5 \text{ cm}^2$ area per channel
- Power dissipation < 250 mW

FBK NUV-HD low field SiPMs optimized for 87 K

7

- 10 x 10 mm² SiPMs
- Peak efficiency in near UV
- Low field reduces dark rate

IEEE Trans. Electron Dev. 64 2, 2017

FBK NUV-HD low field PDE at 300 K

8

IEEE Trans. Electron Dev. 64 2, 2017

PDE [%

Γ

FBK NUV-HD low field dark rate vs temperature

IEEE Trans. Electron Dev. 64 2, 2017

24 cm² single-channel detector

SiPM topology - 6 cm²

SiPM topology - full detector

24 cm² detector energy spectrum

24 cm² detector timing resolution

Requirements for DS-20k photodetector modules

- Detection efficiency > 40% \checkmark
- Timing resolution < O(10) ns \checkmark
- Dark rate + correlated noise + noise trigger rate < 0.1 Hz/mm²

practical constraints

- Operation at 87 K
- 5 x 5 cm² area per channel \checkmark
 - Power dissipation < 250 mW \checkmark

From prototype to production - ongoing work

- New run of NUV-HD-LF SiPMs with optimized form factor and performance improvement
- Low-background packaging R&D
- Construction of a dedicated packaging facility at LNGS

SIPM1	SIPM2 +	SIPM3 +	SIPM4 +
SIPM5	SIPM6 +	SIPM7 +	SIPM8 —
SIPM9	SIPM10	SIPM11	SIPM12
SIPM13 +	SIPM14	SIPM15	SIPM16 +
SIPM17	SIPM18	SIPM19	SIPM20 +
SIPM21	SIPM22	SIPM23	SIPM24

Output noise density of summing amp and 6 cm² quadrant

Cryogenic transimpedance amplifier

Pulse shape discrimination in liquid argon

Phys. Rev. D 93 081101, 2016