

Proudly Operated by Battelle Since 1965

Low Radioactivity Argon for Rare Event Searches

HENNING O. BACK

Pacific Northwest National Laboratory TAUP2017, Sudbury, ON, Canada

TAUP2017

Terrestrial argon and ³⁹Ar sources

As I understand it ← it's more complicated

- ⁴⁰Ar comes from ⁴⁰K decay
- Atmosphere
 - ³⁹Ar produced by cosmic rays
 - ³⁹Ar concentration = 8×10⁻¹⁶ ³⁹Ar/⁴⁰Ar

Crust

- No cosmic rays
- ³⁹Ar produced underground
- Mantle
 - Very low U and Th
 - Lowest ³⁹Ar levels

Atmospheric isotopic abundance

J.-Y. Lee, et al., Geochim. Cosmochim. Acta 70 (2006) 4507-4512

 36 Ar - 0.334% 38 Ar - 0.063% 40 Ar - 99.604%

Solar system isotopic abundance

K. Lodders, Astrophys. J. 591 (2003) 1220-1247

³⁶Ar - 84.59% ³⁸Ar - 15.38% ⁴⁰Ar - 246 ppm

Terrestrial argon and ³⁹Ar sources

As I understand it ← it's more complicated

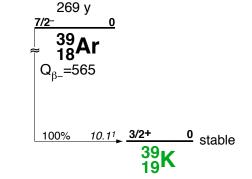
Proudly Operated by Battelle Since 1965

- ⁴⁰Ar comes from ⁴⁰K decay
- Atmosphere

No cosmic rays

Very low U and Th

I owest ³⁹Ar levels


Crust

Mantle

³⁹Ar produced by cosmic rays

³⁹Ar produced underground

³⁹Ar concentration = 8×10^{-16 39}Ar/⁴⁰Ar

³⁹Ar production reactions

⁴⁰ Ar(n,2n)→ ³⁹ Ar	⁴⁰ Ar(p,pn)→ ³⁹ Ar
⁴⁰ Ar(n,np)→ ³⁹ Cl	⁴⁰ Ar(p,2p)→ ³⁹ Cl
⁴⁰ Ar(n,pn)→ ³⁹ Cl	⁴⁰ Ar(γ,n)→ ³⁹ Ar
⁴⁰ Ar(n,d)→ ³⁹ Cl	³⁸ Ar(n,γ)→ ³⁹ Ar
	⁴⁰ Ar(µ⁻,n)→ ³⁹ Cl

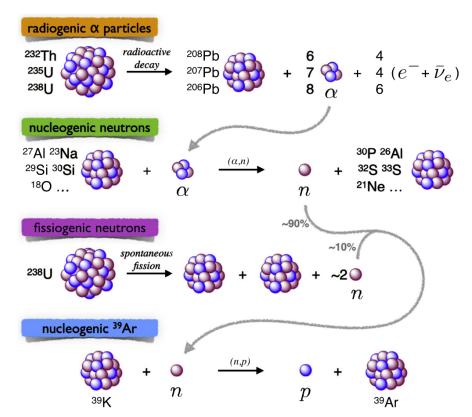
(Loosli & Oeschger, Earth Planet. Sci. Lett. 5 (1968) 191-198)

Terrestrial argon and ³⁹Ar sources

Proudly Operated by Battelle Since 1965

- ⁴⁰Ar comes from ⁴⁰K decay
- Atmosphere
 - ³⁹Ar produced by cosmic rays

As I understand it ← it's more complicated


³⁹Ar concentration = 8×10^{-16 39}Ar/⁴⁰Ar

Crust

- No cosmic rays
- ³⁹Ar produced underground

Mantle

- Very low U and Th
- Lowest ³⁹Ar levels

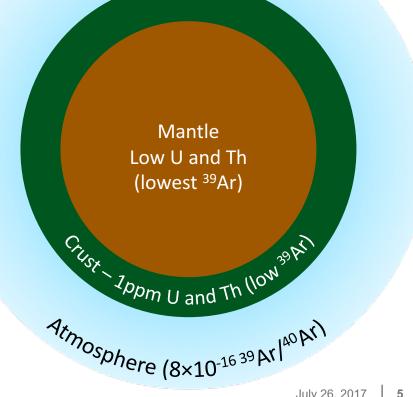
(O. Šrámek, et al., Geochim. Cosmochim. Acta 196 (2017) 370)

Terrestrial argon

As I understand it ← it's more complicated

Proudly Operated by Battelle Since 1965

⁴⁰Ar comes from ⁴⁰K decay


- Atmosphere
 - ³⁹Ar produced by cosmic rays
 - ³⁹Ar concentration = 8×10⁻¹⁶ ³⁹Ar/⁴⁰Ar

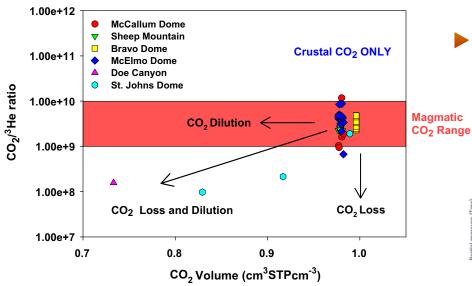
Crust

- No cosmic rays
- ³⁹Ar produced underground

Mantle

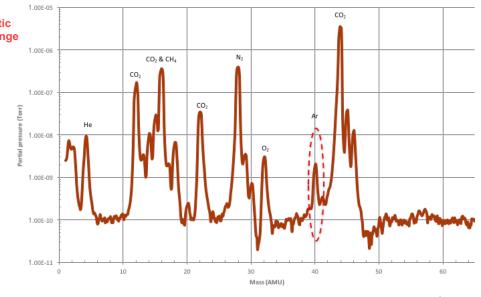
- Very low U and Th
- Lowest ³⁹Ar levels

A low-radioactivity UAr source CO₂ well in SW Colorado



Proudly Operated by Battelle Since 1965

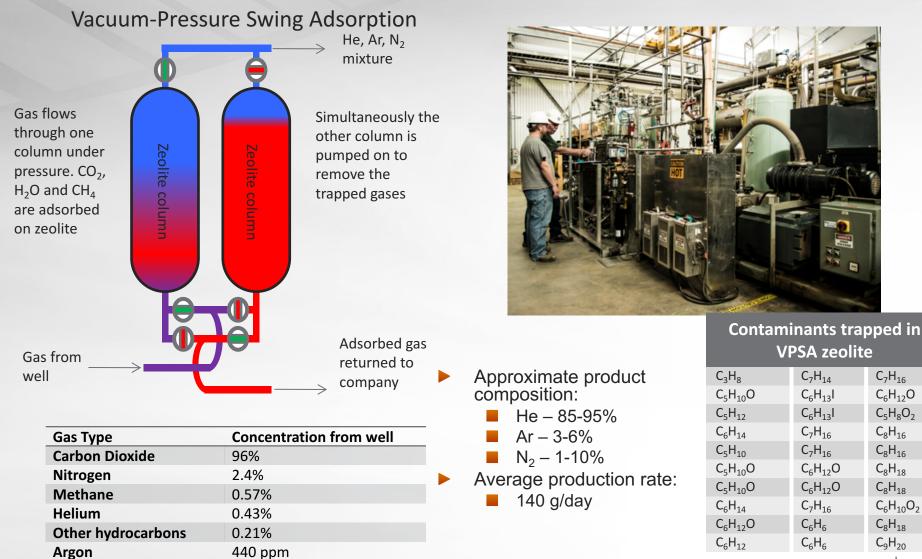
- Geological formations trap gases underground
- CO₂ in US Southwest is magmatic-like



(Geochim. et Cosmochim. Acta 72 (2008) 1174–1198)

CO₂ well in SW Colorado with 400ppm Ar (Nucl. Phys. B, 197 (2009) 70-73) (Nucl. Instr. Math. A 597 (2009) 46 54)

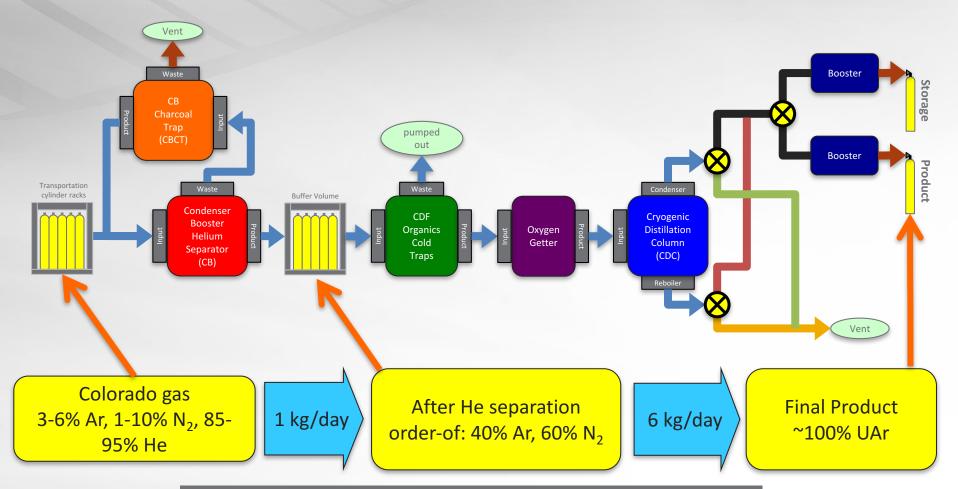
(Nucl. Instr. Meth. A 587 (2008) 46-51)



6

DarkSide-50 target production UAr extraction - Colorado

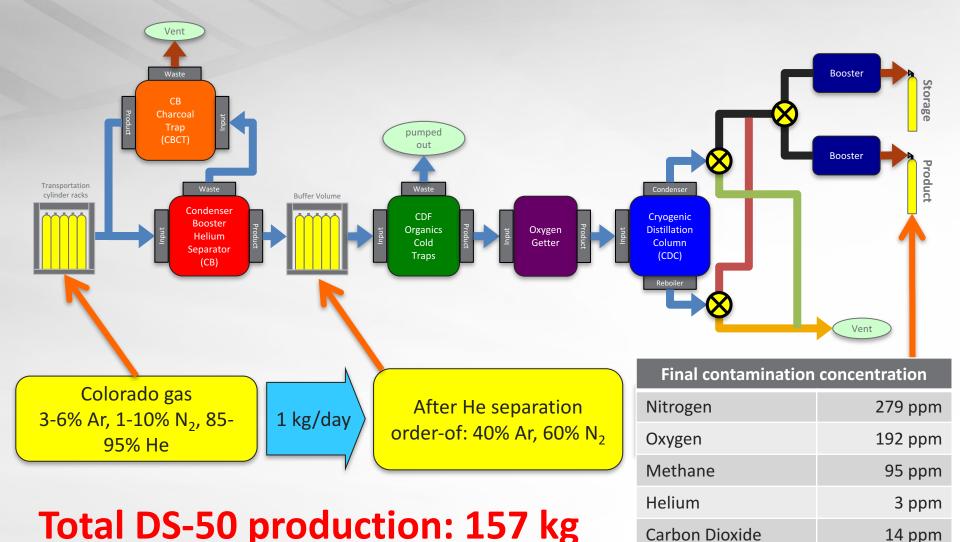
Proudly Operated by Battelle Since 1965



TAUP2017

DarkSide-50 target production UAr purification – Fermilab, Illinois, USA

Proudly Operated by Battelle Since 1965


Contaminants frozen in cryogenic systems						
C₃H ₈	C ₅ H ₁₀ O	C ₇ H ₁₄	C ₆ H ₁₂ O	C ₇ H ₁₆	C ₈ H ₁₈	
C ₅ H ₁₀ O	C ₅ H ₁₀ O	C ₆ H ₁₃ I	C ₆ H ₁₂ O	C ₆ H ₁₂ O	C ₈ H ₁₈	
C ₅ H ₁₂	C ₆ H ₁₄	C ₆ H ₁₃ I	C ₇ H ₁₆	C ₅ H ₈ O ₂	C ₆ H ₁₀ O ₂	
C ₆ H ₁₄	C ₆ H ₁₂ O	C ₇ H ₁₆	C ₆ H ₆	C ₈ H ₁₆	C ₈ H ₁₈	
C _E H ₁₀	C _c H ₁₂	C ₇ H ₁ c	CcHc	C _o H _{1c}	C _o H ₂₀	

July 26, 2017 8

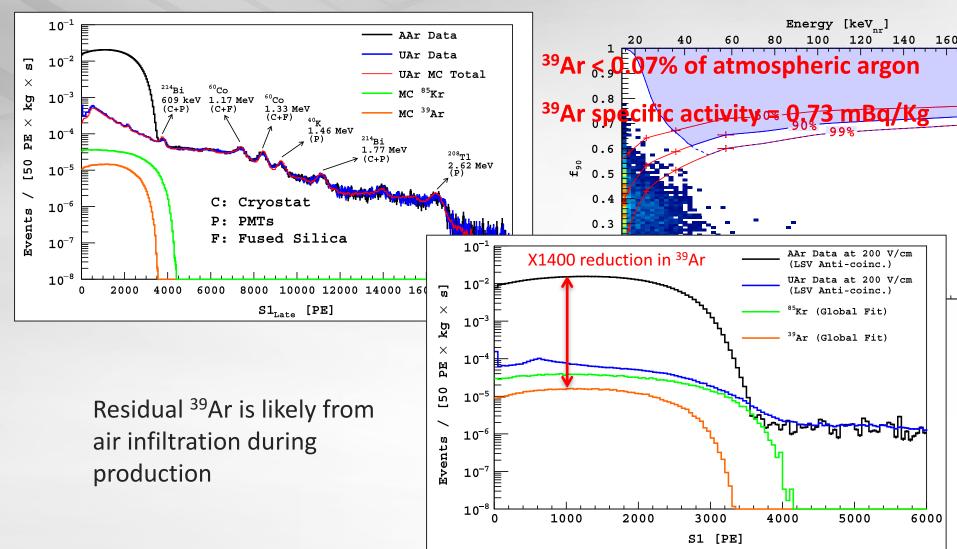
DarkSide-50 target production UAr purification – Fermilab, Illinois, USA

Proudly Operated by Battelle Since 1965

Cryogenic distillation column

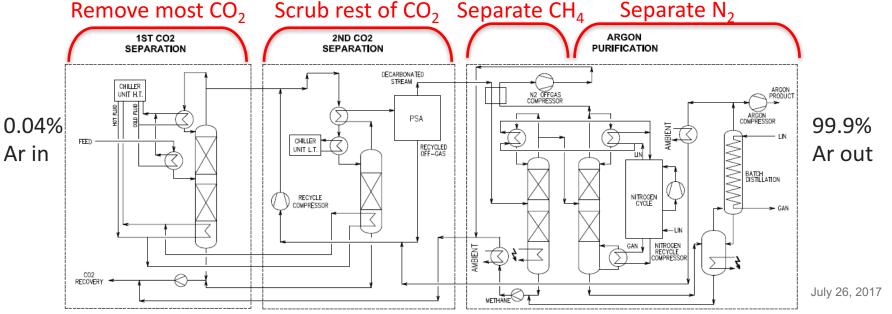
The end DarkSide-50 UAr production

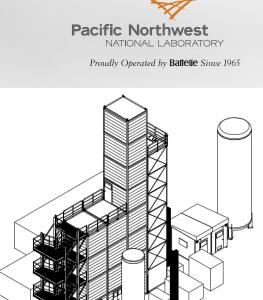
Proudly Operated by Battelle Since 1965


March 2016

Underground argon in DarkSide-50 Phys. Rev. D 93, 081101(R) (2016)

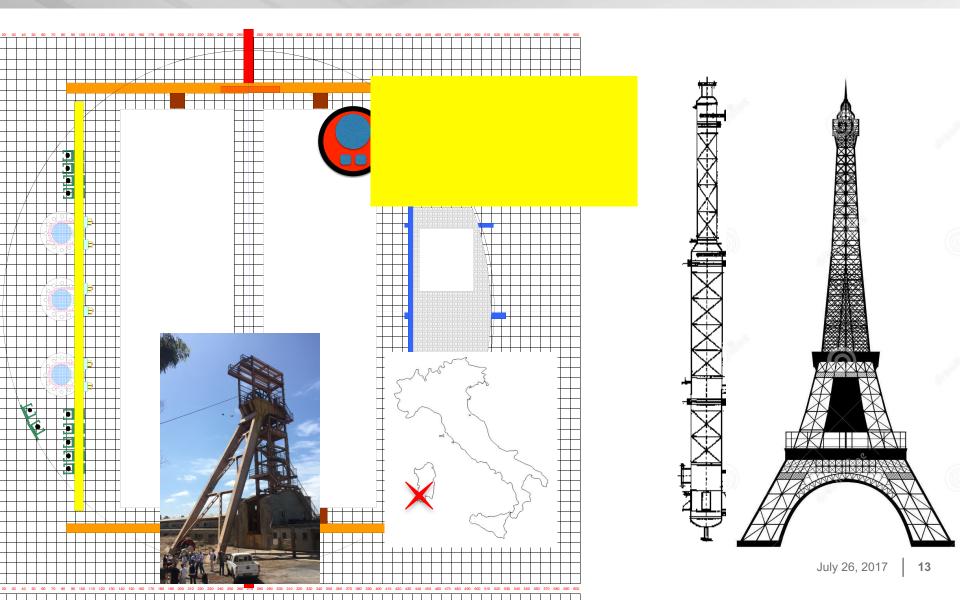
Proudly Operated by Battelle Since 1965




12

DarkSide-20k target Obtaining 50 tons of UAr

- Extracts argon from CO₂
 - Same source as DarkSide-50 target
- Production:
 - 100 kg/day
 - 99.9% pure



DarkSide-20k target Obtaining 50 tons of UAr

Proudly Operated by Battelle Since 1965

Proudly Operated by Baffelle Since 1965

Conclusions / Highlights

DarkSide-50 successfully produced 157 kg argon target with 1400x less ³⁹Ar than atmospheric argon

- Challenges to DarkSide-50 target production are understood (minor contaminations)
- Residual ³⁹Ar in DarkSide-50 target likely from an air infiltration
 intrinsic ³⁹Ar in underground argon < DarkSide-50 target
- Plans for producing and purifying 50 tons of underground argon for DarkSide-20k are firmly in place

Further reduction of ³⁹Ar possible through cryogenic distillation with Aria