Ultra-Low-Background Material Screening with the BetaCage Time Projection Chamber

Michael A. Bowles

SOUTH DAKOTA

SCHOOL OF MINES

& TECHNOLOGY

South Dakota School of Mines & Technology

TAUP 2017

Wednesday, July 26, 2017

This work was supported in part by the National Science Foundation (Grant No. PHY-1506033) and by the South Dakota Board of Regents

BetaCage Collaborators

R. W. Schnee E. H. Miller M. A. Bowles M. D. Thompson

Pacific

NATIONAL LABORATORY

S. Golwala R. H. Nelson Z. Ahmed

R. A. Bunker

D. Grant P. Davis

BetaCage, Michael Bowles

Rare-Event Searches & Material Radiopurity

- Neutrons from (α,n) reactions: LZ, Darkside: where "plate-out" of radon daughter leads to reactions on the interior surfaces
- Surface α 's: CLEAN, DEAP: high surface α -rate \rightarrow event (mis-)reconstruction into the detector fiducial volume
- Pb-210 ERs: SuperCDMS Soudan, DAMIC, .. (many!)
- Pb-206 NRs: Dominant for SuperCDMS Soudan & SNOLAB (expected), XENON1T, LZ, CUORE, & DarkSide

Low-energy β -emitters: ³²Si, ³H, ³⁹Ar, ¹⁴C

- ³²Si dominant background for DAMIC & SuperCDMS SNOLAB ...³H contamination
- ³⁹Ar DEAP, & Darkside (TPC+cryostat materials)

Assay Methods & Disadvantages

High Purity Germanium γ Screening High-resolution (keV) spectra (up to MeV) Size-limited & threshold ~10's keV Typically insensitive to low-energy betas

Mass Spectroscopy (E/B field separation) Isotopic sensitivity: ≥ ppq [ppm-ppb] Low number of isotopes in sample Destructive & potential contamination

Alpha Counting (e.g. using electrostatics) Can measure lots of material! Carry hard-to-reject backgrounds

BetaCage Detector Design

- **Goal:** perform fast, high-sensitivity isotopic material assay
- Time projection chamber (TPC) made from very radio-pure materials carrying a large sample area
 - Gas stops all α 's + low-energy β 's
- Shield external radiation (gammas)
 - Deploy deep underground (muons)
- XY grids with \approx cm spatial resolution
- Trigger grid provides signal start time

BetaCage Detector Design

- **Goal:** perform fast, high-sensitivity isotopic material assay
- Time projection chamber (TPC) made from very radio-pure materials carrying a large sample area
 - Gas stops all α 's + low-energy β 's
- Shield external radiation (gammas)
 - Deploy deep underground (muons)
- *XY* grids with \approx **cm** spatial resolution
- Trigger grid provides signal start time

BetaCage Detector Design

- **Goal:** perform fast, high-sensitivity isotopic material assay
- Time projection chamber (TPC) made from very radio-pure materials carrying a large sample area
 - Gas stops all α 's + low-energy β 's
- Shield external radiation (gammas)
 - Deploy deep underground (muons)
- *XY* grids with \approx **cm** spatial resolution
- Trigger grid provides signal start time

Superb Background Rejection

Background Veto:

- A. Doesn't cross trigger grid
- B. Track not 100% in target gas
- C. Crosses veto grid
- D. No Energy in bulk grid
- E. Wrong track direction: dE/dx

Straightforward for α particles

F. Track doesn't start low enough

Straightforward for α particles

Superb Background Rejection

Background Veto:

- A. Doesn't cross trigger grid
- B. Track not 100% in target gas
- C. Crosses veto grid
- D. No Energy in bulk grid
- E. Wrong track direction: dE/dx

Straightforward for α particles

F. Track doesn't start low enough

Straightforward for α particles

Superb Background Rejection

Background Veto:

- A. Doesn't cross trigger grid
- B. Track not 100% in target gas
- C. Crosses veto grid
- D. No Energy in bulk grid
- E. Wrong track direction: dE/dx

Straightforward for α particles

F. Track doesn't start low enough

Straightforward for α particles

BetaCage Backgrounds

- Simulations indicate external γ 's from surface of lead shield dominate β -screening backgrounds
- β background expectation: 0.3 keV⁻¹ m⁻² day⁻¹

BetaCage Sensitivity β: 0.1 keV⁻¹ m⁻² day⁻¹ employing bkgd subtraction

> limited by compton scatters in the sample from external gammas

BetaCage Backgrounds

- Simulations indicate external γ 's from surface of lead shield dominate β -screening backgrounds
- β background expectation: 0.3 keV⁻¹ m⁻² day⁻¹

BetaCage, Michael Bowles

Si-32 Contamination & Sensitivity

- Silicon target experiments *e.g.* SuperCDMS, DAMIC face a major background from ³²Si & ³²P β decays
- ³²Si / ³²P β pairs event multiplicity <u>2 Beta Decay Chain</u> β: **Q = 225 keV** ³²Si \star DAMIC measured ³²Si rate: t_{1/2}~150 v $\star R_{DAMIC} = 80^{+110}_{-65} / kg / day (95\% C.L.)$

β: **Q** = 1.7 MeV

t_{1/2}~14.3 d

Si-32 Contamination & Sensitivity

- Silicon target experiments *e.g.* SuperCDMS, DAMIC face a major background from ³²Si & ³²P β decays
- ◆ ³²Si / ³²P β pairs event multiplicity
 ★ DAMIC measured ³²Si rate:
 - $\star R_{DAMIC} = 80^{+110}_{-65} / kg / day (95\% C.L.)$

event multiplicity in DAMIC CCDs

β: **Q** = 1.7 MeV

t_{1/2}~14.3 d

32 **E**

<u>2 Beta Decay Chain</u>

β: **Q = 225 keV**

t_{1/2}~150 y

32P

³²Si

Si-32 Contamination & Sensitivity

- Silicon target experiments *e.g.* SuperCDMS, DAMIC face a major background from ³²Si & ³²P β decays
- ◆ ³²Si / ³²P β pairs event multiplicity
 ★ DAMIC measured ³²Si rate:
 - $\star R_{DAMIC} = 80^{+110}_{-65} / kg / day (95\% C.L.)$

BetaCage Sensitivity

- ★ Surface β's: can ID 1% RDAMIC in 35 days
- ★ Bulk β's: can ID 1/4 R_{DAMIC} 3σ using *event multiplicity* on ³²Si & ³²P decays in 60 days (for 500 µm thick samples)

β: **Q = 1.7 MeV**

t_{1/2}~14.3 d

<u>2 Beta Decay Chain</u>

β: **Q = 225 keV**

t_{1/2}~150 v

³²Si

BetaCage Prototype

Very Low-Radon Cleanroom

50 V/cm drift field

40 x 40 x 20 cm3

80 K, 70 gm carbon trap: removes radon + outgassed sample molecules

BetaCage, Michael Bowles

- Live-monitoring software with low-level trigger/pulse data & operating conditions of vessel
 - Have turned on High Voltage to see sparks during ramp up
- Calibration w/ alpha sources
- ★ Implement track reconstruction

Digitizer Board

BetaCage, Michael Bowles

Low-Radon Cleanroom

electronics

feedthru

inside

multiple data channels

outside

High Voltage Supply

TAUP 2017

BetaCage Outlook

• BetaCage will provide incredible sensitivity to α 's and low-energy β 's on material surfaces & within the bulk of

+ Expected sensitivity: 0.1 β keV⁻¹ m⁻² day⁻¹, 0.1 α m⁻² day⁻¹

- Design has matured w/ Prototype commissioning in progress
 - Continue estimating assay sensitivity: simulating internal U/ Th material contamination levels & external backgrounds

★ Short term: Demonstrate Prototype sensitivity ~ 0.1 α m⁻² day⁻¹

Radon Daughters Backgrounds

- Radon daughters (Po, Pb) on trigger grid wires + in gas are a dangerous alpha & beta background for the BetaCage
 - Still can veto most events from wires: using trigger signal
 - Beta-emitters elsewhere can be vetoed almost perfectly!

Main Sources of Background

- 1. (Un)clean cathode/anode wire
- 2. During the assembly of the detector in the cleanroom
- 3. Plate-out from radon-222 during detector lifetime

backupSi-32 Contamination

TAUP 2017

Radon Mitigation w Cooled Carbon Trap

Relatively small tube: L = 25-cm (length) & $\varphi = 2.5$ -cm (diameter) 70 grams of high-quality synthetic carbon [1]:

 $\rho = 0.6 \text{ g/cm}^3$ (density) & $S = 1342 \text{ m}^2/\text{g}$ (surface area)

For Q = 8 lpm (circulation flow rate) & T = 170 K (trap temperature):

 $\mu_{\rm s} = 4Q/\pi \, \varphi^2 \approx 26 \, {\rm cm/s}$ (superficial velocity through trap)

 $k_a(S,T) \approx 1.4 \times 10^7 \text{ cm}^3/\text{g}$ (dynamic adsorption coefficient) [2]

 $\tau_{\text{trap}} = Tk_a \rho L/(273 \text{ K})\mu_s \approx 56 \text{ days ('punch-through' time)} [2]$

Survival fraction for radon atoms entering the trap:

 $exp(-\tau_{trap}/5.52 \text{ d}) \approx 3.8 \times 10^{-5}$

Considering flush time of 0.6-m³ detector volume yields:

x100 reduction!

- [1] Blucher GmbH 102688, see www.bluecher.com/en/technology
- [2] K.P. Strong & D.M. Levins, *DOE Nuclear Air Cleaning Conference* (1978)
- [3] J.B.R. Battat *et al.*, JINST, 9 (2014) P11004
- [4] H. Sigmen & G. Zuzel, Applied Radiation and Isotopes, 67 (2009) p. 922
- [5] Mitigation allows use of relatively leaky mini-diaphragm circulation pump

Radon Mitigation w Cooled Carbon Trap

Thanks..

