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Flux Measurement Using the DUNE Near Detector
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Deep Underground Neutrino Experiment - DUNE

DUNE is a next generation long-
baseline (1300 km) neutrino
oscillation experiment

40 kt Liquid Argon (LAr) far
detector 1.5 km underground in
SURF, South Dakota

Multi MW neutrino beam from the
LBNF at Fermilab

A near detector 574 m from the
first focusing horn

See talk 173 Ernesto Kemp
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Primary Science Program
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75% CP Violation Sensitivity
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Constraining Uncertainty at the Target

Beam related uncertainties due to focusing and hadron production need to be minimized.

Using replica targets (NA61/SHINE), T2K reduced total flux uncertainties to 9%
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Constraining Uncertainties with a Near Detector

ldeally we'd measure:
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What we can measure is: Determined by near detector
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...unfortunately, there are strong correlations in energy, flux, & cross-section



Neutrino-Nuclear Cross Sections

Cross section systematics limit the sensitivity for any long-baseline experiment
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Mitigating cross section uncertainties in flux measurements requires standard candles.



Standard Candles

Constrain the flux via processes with known cross-section:
Neutrino-electron elastic scattering

Decouples normalization systematics (x-sec, detector response, & BG)
Independent constraint on absolute flux normalization

Low-v (low hadronic recoil energy) v, CC process

Decouples shape systematics (x-sec, detector response, & BG)
Independent constraint on vV, energy spectrum (flux shape at near detector)



Neutrino-Electron Scattering

_ Used by MINERVA to constrain
Signal: NuMI flux from 9% to 6%, with

only 135 17 events
Single, very forward going electron (0.5 to 8 GeV) 0.3 [ :
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L ow-Vv Process

Signal:

Single, energetic (1 to 8 GeV), very forward
going muon

Theoretical uncertainty on cross section <5%
above 1GeV

Critical BG: Energetic missed neutrons
Requirements:
Sufficient mass to recover a reasonable

fraction on of neutron energy. ~70% is
sufficient to suppress BG
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Production mode v, Events
on Ar (Carbon)

Near Detector (at 574 m) Event Rates (per tonne at 10%° POT)

v, Events
on Ar (Carbon)

CC QE (v,n — up) 30,000 (28,000)

13,000 (15,000)

NC elastic (v, N — v, N) 11,000 (11,000) 6,700 (68,00)
CC resonant (v,p — p pn™) 21,000 (24,000) 0 (0)
CC resonant (v,n — p nrt (pr?)) 23,000 (21,000) 0 (0)

CC resonant (v,p — putpr~ (nn?)) 0 (0) 83,00 (7,800)
CC resonant (v,n — ptnr™) 0(0) 12,000 (8,100)
NC resonant (v,p — v,pr” (n7™)) 7,000 (9,200) 0 (0)
NC resonant (v,n — v,nrt (pr°)) 9,000 (11,000) 0 (0)
NC resonant (v,p — v,pr~ (nw’)) 0 (0) 3,900 (4,300)
NC resonant (v,n — y,nmn~) 0 (0) 4,700 (4,300)

CCDIS (vy,N -y~ X or7,N — p*X) 95,000 (92,000)

24,000 (25,000)

NC DIS (v,N — v, X or 7,N — 17, X) 31,000 (31,000)

10,000 (10,000)

CC coherent 7 (v, A — pu~An™) 930 (1,500) 0 (0)
CC coherent 7~ (v, A — putAn™) 0 (0) 800 (1,300)
NC coherent 7° (v, A — v, An° or v, A — 7, A7) 520 (840) 450 (720)
NC elastic electron (v,e™ — v,e” or vye” — Dye”) 16 (18) 11 (12)
Inverse Muon Decay (v,e — p~ 1) 9.5 (11) 0 (0)
Total CC 170,000 (170,000) 59,000 (61,000)
Total NC+CC 230,000 (230,000) 84,000 (87,000)

We now expect 10 times these rates per year (operating at 102" POT)
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Near Detector Design requirements

STT Module

Barrel Backward ECAL

Large target mass (argon to minimize Barrel il

near-far systematics) e o
n

Magnet RPCs

High angular and tracking resolution flle
Low detection thresholds Forward

ECAL

Particle ID of electrons, muons, pions,
Kaons, & protons

Charge separation

Maximal acceptance \s Z

CDR reference design: Fine Grain Tracker (FGT) *




The DUNE Near Detector

The current collaboration concept design is a ‘hybrid’ LArTPC + tracking detector.

Modular LArTPC (~3L t)
S LIBns : g £

-
M tagger

Modular LAr-TPC: high statistics -Ar interactions, assessment of LArTPC response.

Low Density Tracker: precision characterization of v-nucleus interactions, complementary
signal vs. BG discrimination. Possibly FGT or GArTPC. 1



Summary

DUNE is a next gen long-base line oscillation experiment, with the primary
purpose of observing leptonic CP violation and solving the neutrino mass

ordering.

Rate related uncorrelated uncertainty must be kept below 2% to ensure 75%
CP violation coverage at 3 sigma sensitivity.

A near detector will be used to reduce the uncertainty on flux normalization
and shape, independent of cross section uncertainties.

The current near detector design meets the requirements for constraining
sensitivity. Nonetheless, the design is being augmented to include a larger
Argon mass and minimize detector systematics near to far.
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Backup: Fine Grain Tracker (FGT)

Excellent vertex separation and tracking , _
_ ossible
resolution external

target

2.0 cm 20 cm 20cm 2
o 4.0 cm —_— 4.0 cm —— 40cm | — 4.0

Large overall mass for flux constraint l
(mostly carbon)

MODULE

Multiple targets: Ar, Ca, C...

- -
__________

Argon gas targets in pressurized 140 bar
carbon fiber tubes
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