

MiniBooNE-DM: a dark matter search in a proton beam dump

Alexis A. Aguilar-Arévalo (ICN-UNAM) for the MiniBooNE-DM collaboration

XV International Conference on Topics on Astroparticle and Underground Physics (TAUP 2017) Sudbury, ON, Canada, 24-28 July, 2017

Outline

Motivation: Sub-GeV dark matter

The BNB and the MiniBooNE detector

Dark Matter search in beam-dump mode

Results

Future perspectives

Conclusions

Motivation

• Light (sub-GeV) particles from a **Dark Sector** interacting with ordinary matter through a **light mediator** are viable dark matter candidates.

• Vector portal models \rightarrow most viable for thermal, sub-GeV DM.

• Sub-GeV masses significantly less explored, but theoretically well motivated. Accessible to accelerator beam dump experiments.

Alexis A. Aguilar-Arévalo (ICN-UNAM)

Minimal kinetically mixed dark photon

• A minimal extension to the Standard Model:

- U(1)_D gauge boson ("dark photon") increases the DM annihilation cross section to give the correct relic density.
- Mediator with mass $O(10-10^3 \text{ MeV})$ could resolve the $(g-2)_{\mu}$ anomaly.

P. Fayet,Phys. Rev. D 75, 115017 (2007)M. Pospelov,Phys. Rev. D 80, 095002 (2009)

Alexis A. Aguilar-Arévalo (ICN-UNAM)

TAUP 2017

24-28 July 2017

Dark Matter Beam and Detection

• Production in high-energy collisions and detection by scattering.

 \square Event rate: ~ $\epsilon^4 \alpha_D$, for $m_V > 2m_\chi$ (invisible decay of V).

B. Batell et al., *Phys. Rev. Lett.* **113** (2014) 171802. arXiv:1406.2698 [hep-ph].
P. deNiverville et al., *Phys. Rev.* **D84** (2011) 075020. arXiv:1107.4580 [hep-ph].

The BNB and the MiniBooNE detector

Fermilab Accelerator Complex

The Booster Neutrino Beam

- 8 GeV protons from the FNAL Booster
- Target: Be , 1.7 interaction lengths, 541 m to the detector
- Magnetic horn focuses mesons
- Mesons decay along 50 m pipe (air), with Fe beam dump at the end.

The MiniBooNE detector

- 800 tons of mineral oil (CH₂)
- Cherenkov detector with some scintillation from trace fluors in oil
- 1280 main and 240 veto PMTs
- Ran for >10 yr in v and \overline{v} modes, published 27 papers.

The beam and the detector are stable and well understood

Alexis A. Aguilar-Arévalo (ICN-UNAM)

CCQE and NCE events

A. A. Aguilar-Arevalo et al., Phys. Rev. D81, 092005 (2010), arXiv:1002.2680 [hep-ex]

 Absolute and relative (to CCQE) crosssections.

A. A. Aguilar-Arevalo et al., Phys. Rev. D82, 092005 (2010), arXiv:1007.4730 [hep-ex]

Beam Dump (Off Target) mode

- Reduce v production by steering beam to miss the target (horn powered off).
- Beam impacts on the beam dump
- Charged mesons absorbed in the steel beam dump before decay → reduces the neutrino flux.

MiniBooNE target assembly

Neutrino flux reduction

Off-Target flux: $\Phi_{off} = (1.19 \pm 1.1) \times 10^{-11} v / (POT \cdot cm^2), \quad 0.2 < E_v < 3 \text{ GeV}$

Comp. to v-Mode: - Flu

- Flux reduced by factor of ~30
 - Event rate reduced by factor of ~50.

Off Target beam stability

24-28 July 2017

N-DM event selection

Single p/n track with a few hundred MeV kinetic energy.

- 1 Track (single recoil) in beam timing window
- Event is centralized contained
 - No activity in the veto
 - Within tank fiducial volume
- Signal above visible energy and number of hits threshold.
- PID: Nucleon or electron

Based on the \overline{v} NCE cross section analysis.

A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D91** (2015) 012004. arXiv:1309.7257 [hep-ex].

Dark Matter generator

- Used BdNMC to generate T_N^{true} event lists.
- Produced event lists $m_V \in [0.01, 0.1] \text{ GeV/c}^2$ and $m_\chi \in [0.001, m_V/2) \text{ GeV/c}^2$
- Included π^0/η -decay and Bremsstrahlung channels.

P. deNiverville et al., (2008), arXiv:1609.01770 [hep-ph]

• π^0/η event lists from beam MC used to generate π^0 and η distributions.

Fit strategy

- Use 4 distributions:
- $CCQE_v$ neutrino-Mode
- CCQE_{Off} BDump-Mode
- NCE_v neutrino-Mode
- NCE_{Off} BDump-Mode (signal)
- Use correlations among bins across all samples.
- CC data help constrain flux uncertainties.
- NC data help constrain v crosssection uncertainties.

Results

	#events	uncertainty
Beam unrel. bkg Beam rel: ν _{det} bkg Beam rel: ν _{dirt} bkg Total Bkg	697 775 107 1579	34% (pred. sys.)
Data	1465	3% (stat.)
Fit Results	1548	13% (fit effective error)

- Data consistent with background-only.
- Systematics dominated.
- Constraint samples reduce syst \rightarrow 13%.

90% C.L. limits

- CL limit on $\epsilon^4 \alpha_{\rm D}$ for a given m_V and m_{χ} .
- Only considered on-shell decays $(m_v > 2m_r)$.
- Slice to compare to other experiments.

Results

- In most of par. space: exclude model solutions to the $(g-2)_{\mu}$ anomaly
- in some of par. space: exclude model solutions matching the relic density.
- Overall: new regions of parameter space excluded.
- Cover most of the gap between 1 MeV/ $c^2 < m_{\chi} <$ direct detection.

Next analyses of the MB data set

Increase sensitivity wrt. nucleon-DM elastic scattering:

DM resonance scattering $\Delta \rightarrow \pi^0$, where NC π^0 v-scattering is the main background.

- π^0 is a clean signal
- expect small beam unrelated backgrounds

Elastic DM-electron scattering where SM $\nu\text{-}e$ scattering is the main background.

- like v-e is very forward peaked

RF spill event timing

- Use time structure of the BNB
- Massive DM delayed relative to \boldsymbol{v} backgrounds
- Will increase sensitivity to DM masses > 70 MeV/c^2

Future: a dedicated beam dump

Replace **BNB target and horn** with a **dedicated steel beam dump** \rightarrow x10 fewer v's than in off-target

A non-trivial upgrade to the BNB → include a sub-GeV DM search to the Short Baseline Neutrino (SBN) program?

(see talk by R. Van de Water @ U.S. Cosmic Visions 2017)

A sub-GeV DM search with the SBND:

- Will achieve x10 improvement in signal sensitivity relative to MiniBoooNE
- Requires deployment of improved absorber (replacing TGT assembly+horn)
- Sensitivity estimates are robust, based on lessons learned from MB search.
- LOI submitted to FNAL PAC

Alexis A. Aguilar-Arévalo (ICN-UNAM)

24-28 July 2017

Sudbury, ON, Canada

Conclusions

- MiniBooNE collected data (1.86×10²⁰ POT) in beam-offtarget mode to search for sub-GeV dark matter.
- Beam-off-target suppresses neutrino backgrounds.
 Beam unrelated backgrounds significant.
- First of its kind proton beam dump search with a large well characterized neutrino detector (dedicated collab).
- Nucleon-DM elastic scatter analysis is complete e-DM and inelastic π^0 channels are underway.
- Future opportunities (e.g. DM search with SBN) are being explored.

Thank you for your attention!

A.A. Aguilar-Arevalo et al., Phys. Rev. Lett. 118, 221803 (2017), arXiv:1702.2688 [hep-ex].

Alexis A. Aguilar-Arévalo (ICN-UNAM)

TAUP 2017

24-28 July 2017

Sudbury, ON, Canada

Backups

MiniBooNE-DM Collaboration

A.A. Aguilar-Arevalo ¹ M. Backfish ³ A. Bashyal ¹⁵ B. Batell ² B.C. Brown ³ R. Carr ⁴ A. Chatterjee ¹⁵ R. Cooper ^{5,12} P. deNiverville ⁶ R. Dharmapalan ⁷ Z. Djurcic ¹⁰ R. Ford ³ F.G. Garcia ³ G. T. Garvey ⁸ J. Grange ^{9,10} J.A. Green ⁸ W. Huelsnitz ⁸ I. L. de Icaza Astiz ¹ G. Karagiorgi ⁴ T. Katori ¹¹ T. Kobilarcik ³ W. Ketchum ⁸ Q. Liu ⁸ W.C. Louis ⁸ W. Marsh ³ C.D. Moore ³ G.B. Mills ⁸ J. Mirabal ⁸ P. Nienaber ¹³ Z. Pavlovic ⁸ D. Perevalov ³ H. Ray ⁹ B.P. Roe ¹⁴ M.H. Shaevitz ⁴ S. Shahsavarani ¹⁵ I. Stancu ⁷ R. Tayloe ⁵ C. Taylor ⁸ R.T. Thornton ⁵ R. Van de Water ⁸ W. Wester ³ D.H. White ⁸ J. Yu ¹⁵

¹ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, D.F. México
 ²University of Pittsburgh, Pittsburgh, PA 15260, USA
 ³ Fermi National Accelerator Laboratory, Batavia, IL 60510

 ⁴ Columbia University; New York, NY 10027
 ⁵ Indiana University, Bloomington, IN 47405
 ⁶ University of Victoria, Victoria, BC, V8P 5C2
 ⁷ University of Alabama, Tuscaloosa, AL 35487
 ⁸ Los Alamos National Laboratory, Los Alamos, NM 87545
 ⁹ University of Florida, Gainesville, FL 32611
 ¹⁰ Argonne National Laboratory, Argonne, IL 60439
 ¹¹ Queen Mary University of London, London, E1 4NS, UK
 ¹² New Mexico State University, Las Cruces, NM 88003
 ¹³ Saint Mary's University of Minnesota, Winona, MN 55987
 ¹⁴ University of Texas (Arlington), Arlington, TX 76019

BdNMC

[deNivervile, Chen, Pospelov, Ritz] https://github.com/pgdeniverville/BdNMC/releases

• Publicly available proton beam fixed target DM simulation tool developed by Patrick deNiverville (U. Victoria) and collaborators.

Simultaneous Fit

Future MB analyses

- Proton beam is comprised of 81 ns RF pulses (buckets)
- Massive dark matter will propagate sub-luminal
- Characteristic intra-bunch timing improve "high" mass dark matter sensitivity

Future MB analyses

- Will exclude new parameter space in vector portal kinetic mixing theory.
- Produced Model Independent Fit (MIF) for use with other theories.
- MIF used to set CL in leptophobic theory (very significant exclusion).
- Timing analysis underway to improve sensitivity to heavier masses.
- Future MiniBooNE analysis is promising.

Leptophobic Dark Matter

- It is possible that dark matter couples dominantly to quarks.
- Many constraints are evaded proton beams have a significant advantage!
- Simplified model (based on local $U(1)_B$ baryon number)

$$\mathcal{L} = i\bar{\chi}\gamma^{\mu}D_{\mu}\chi - m_{\chi}\bar{\chi}\chi - \frac{1}{4}(V_{B}^{\mu\nu})^{2} + \frac{1}{2}m_{V}^{2}(V_{B}^{\mu})^{2} + \frac{g_{B}}{3}V_{B}^{\mu}\sum_{i}\bar{q}_{i}\gamma_{\mu}q_{i} + \dots$$
$$D^{\mu} = \partial^{\mu} - ig_{B}q_{B}V_{B}^{\mu}$$

P. deNiverville et al., (2016), arXiv:1609.01770 [hep-ph], B. Batell et al., Phys. Rev.D90, 115014 (2014),arXiv:1405.7049 [hep-ph]

- 4 new parameters: $m_\chi, m_V, lpha_B, q_B$
- U(1)_B is "safe" preserves approximate symmetries of SM (CP, P, flavor)
- Gauge anomalies can be canceled by new states at the weak scale

Short Baseline Neutrino (SBN) program

- Motivated by LSND/MiniBooNE to study v oscillations. To begin operations in 2018.
- Short Baseline Near Detector (**SBND**) \rightarrow Ideal for beam dump sub-GeV DM search.

SBN and MiniBooNE signal estimates

• For all configurations, assume 50 m beam dump, 2×10²⁰ POT

	MiniBooNE	MicroBooNE	SBND
Distance from 50m Dump (m)	500	420	50
Analysis Fiducial Mass (tons)	450	60	40
Efficiency (N or e ⁻)	30%	60%	60%
Approximate scaling ¹	1.0	0.38	17.7
DM-N signal ²	1,326	503	23,500
v-N elastic background ³	406+/-80	40	2,500
DM-e ⁻ signal ²	4.8	1.8	85.0
v-e ⁻ elastic background ³	~0.6	< 0.1	~10

¹Sensitivity plots contain other scaling factors, e.g., 1/r² distance scaling, energy, etc.

²Assume M_{γ} = 50 MeV, and σ = 8×10⁻³⁶ cm².

³Contains beamdump neutrino flux suppression 1/44, POT, efficiency, and $\cos \theta_{e-beam} > 0.98$ cut

Previous beam dump / Fixed Target experiments – Proton Beams

Experiment	Location	approx. Date	Amount of Beam (10 ²⁰ POT)	Beam Energy (GeV)	Target Mat.	Ref.
CHARM	CERN	1983	0.024	400	Cu	[16]
PS191	CERN	1984	0.086	19.2	Be	[17, 18]
E605	Fermilab	1986	4×10^{-7}	800	Cu	[19]
SINDRUM	SIN,PSI					
v-Cal I	IHEP Serpukhov	1989	0.0171	70	Fe	[20-22]
LSND	LANSCE	1994-1995 1996-1998	813 882	0.798	H20, Cu W,Cu	[23]
NOMAD	CERN	1996-1998	0.41	450	Be	[18, 24]
WASA	COSY	2010		0,550	LH2	[25]
HADES	GSI	2011	0.32pA*t	3.5	LH2,No,Ar+KCI	[26]
MiniBooNE	Fermilab	2003-2008 2005-2012 2013-2014	6. 27 11. 3 1. 86	8.9	Be Be Steel	[27] [28] [29]

Table by R.T. Thornton, Indiana University Nuclear Physics Seminar, Nov. 21, 2014