

Stimulated Transitions in Resonant Atom Majorana Mixing

José Bernabéu, <u>Alejandro Segarra</u>
IFIC-Valencia

Based on:

J. Bernabéu and A. Segarra, arxiv:1706.08328 [hep-ph]

Neutrinoless double beta decay

$$^{A}Z \rightarrow ^{A}(Z+2) + 2e^{-}$$

 $ightharpoonup \Delta L = 2$ process, only if Majorana v

ightharpoonup Signature: $T_{ee} = Q$

 \triangleright Background: 2 ν mode with $T_{ee} < Q$

$$m_{\beta\beta} \equiv \sum_i U_{ei}^2 \, m_{\nu_i}$$

Neutrinoless double electron capture

$$^{A}Z + 2e^{-} \rightarrow ^{A}(Z-2)^{*}$$

$$m_{\beta\beta} \equiv \sum_i U_{ei}^2 \, m_{\nu_i}$$

Majorana Mixing M_{21}

- $ightharpoonup \Delta L = 2$ mixing, only if Majorana v, followed by 2 X-ray emission
- ightharpoonup Signature: $T_{\gamma\gamma}=Q$
- ➤ No intrinsic background on the resonance

Atom Mixing

$$\mathbb{H} = \mathbb{M} - \frac{i}{2} \, \mathbb{\Gamma} = \begin{bmatrix} M_1 & M_{21}^* \\ M_{21} & M_2 \end{bmatrix} - \frac{i}{2} \begin{bmatrix} 0 & 0 \\ 0 & \Gamma \end{bmatrix}$$

Atom Mixing

$$\mathbb{H} = \mathbb{M} - \frac{i}{2} \, \mathbb{\Gamma} = \begin{bmatrix} M_1 & M_{21}^* \\ M_{21} & M_2 \end{bmatrix} - \frac{i}{2} \begin{bmatrix} 0 & 0 \\ 0 & \Gamma \end{bmatrix}$$

Non-orthogonal eigenstates: $[\mathbb{IM}, \mathbb{I\Gamma}] \neq 0$, $\langle \lambda_S | \lambda_L \rangle = \alpha - \beta$

$$|\lambda_L\rangle = |1\rangle + \alpha |2\rangle,$$

 $E_L \approx M_1,$
 $\Gamma_L \approx |\alpha|^2 \Gamma,$

$$|\lambda_S\rangle = |2\rangle - \beta^* |1\rangle,$$

 $E_S \approx M_2,$
 $\Gamma_S \approx \Gamma.$

$$\alpha = \frac{M_{21}}{\Delta + \frac{i}{2}\Gamma}$$

$$\beta = \frac{M_{21}}{\Delta - \frac{i}{2}\Gamma}$$

Resonant enhancement

$$\Delta\,\sim\,\Gamma$$

$$^{152}\mathrm{Gd} \rightarrow \,^{152}\mathrm{Sm}$$

$$\triangleright \Delta \sim 30 \Gamma$$

$$\alpha = \frac{M_{21}}{\Delta + \frac{i}{2}\,\Gamma}$$

$$\beta = \frac{M_{21}}{\Delta - \frac{i}{2} \, \Gamma}$$

- > Intense experimental searches looking for a better fulfilment of the Resonance Condition.
- Precise measurement of atomic masses achievable due to the development of atomic traps.

Time evolution

$$\left| \left\langle {^A(Z-2)^*} \right| {^AZ(t)} \right\rangle \right|^2 = |\alpha|^2 \left\{ 1 + e^{-\Gamma t} - 2e^{-\frac{1}{2}\Gamma t} \cos(\Delta \cdot t) \right\}$$

 \blacktriangleright Different time-scales given by $|\Delta|$, Γ and Γ_L

Time evolution

$$\left| \left\langle ^{A}(Z-2)^{*} \right|^{A} Z(t) \right\rangle \right|^{2} = |\alpha|^{2} \left\{ 1 + e^{-\Gamma t} - 2e^{-\frac{1}{2}\Gamma t} \cos(\Delta \cdot t) \right\}$$

 \blacktriangleright Different time-scales given by $|\Delta|$, Γ and Γ_L

$$\tau_S \ll t \ll \tau_L \implies \begin{cases} P_L(t) \approx 1 - \Gamma_L t \\ P_S(t) \approx 0 \\ P_{\rm g.s.}(t) \approx |\alpha|^2 \Gamma t \end{cases}$$

Majorana observables

> Spontaneous emission

$$P_L(\Delta t) \approx 1 - \Gamma_L \, \Delta t$$

$$\tau_L \sim 10^{29} \text{ yr}$$

Majorana observables

Spontaneous emission

$$P_L(\Delta t) \approx 1 - \Gamma_L \, \Delta t$$

$$\tau_L \sim 10^{29} \text{ yr}$$

Daughter atom population

$$P_{\rm g.s.}(t) \approx |\alpha|^2 \Gamma t_0$$

1 mole Gd from T_{Earth} includes 20 000 Sm atoms

$$|g.s.\rangle$$

Stimulated Majorana observables

Stimulated emission

$$\frac{\mathrm{d}N_L^{\mathrm{st}}}{\mathrm{d}t} = G \frac{\mathrm{d}N_L^{\mathrm{sp}}}{\mathrm{d}t}$$

$$G = \hbar (\hbar c)^2 \frac{\pi^2}{(\hbar \omega)^3} \frac{dN}{dt dS} \left[\frac{d\omega}{\omega} \right]^{-1}$$

Natural population inversion!

 $\hbar\omega \sim \text{tens of keV}$

Stimulated Majorana observables

> Stimulated emission

$$\frac{\mathrm{d}N_L^{\mathrm{st}}}{\mathrm{d}t} = G \frac{\mathrm{d}N_L^{\mathrm{sp}}}{\mathrm{d}t}$$

$$G = \hbar (\hbar c)^2 \frac{\pi^2}{(\hbar \omega)^3} \frac{dN}{dt dS} \left[\frac{d\omega}{\omega} \right]^{-1}$$
|g.s.\rangle \text{ = 0.00}

Natural population inversion!

 $\hbar\omega \sim \text{tens of keV}$

Generation of X-ray flashes

To generate the extremely short and intense X-ray laser flashes bunches of high-energy electrons are directed through special arrangements of magnets (the green-blue structure).

European XFEL / Marc Hermann, tricklabor

Click on the image to see it full size.

- 100 fs pulse
- 100 nm spot size
- 20W mean power

 $G \sim 100$

Stimulated Majorana observables (cont'd)

Daughter Atom Absorption Spectrum

Laser:

- 100 fs pulse
- 40 μm spot size
- 5 W mean power

$$\frac{\mathrm{d}N_{\mathrm{g.s.}}}{\mathrm{d}t}\bigg|_{\mathrm{abs}} = -60\% \, N_{\mathrm{g.s.}} \, \left[\frac{100 \, \mathrm{ns}}{\tau}\right] \, \mathrm{fs}^{-1}$$

The daughter atom can be excited to any of its atomic levels!

> Typical atomic lifetimes of ¹⁵²Sm range from 10 to 1000 ns

Conclusions and Outlook

- \blacktriangleright Neutrinoless double electron capture is a quantum Majorana Mixing between two atoms, generated by $\Delta L=2$ Majorana mass neutrino, which provides **enhanced observables under the resonance condition**.
- Intense experimental searches looking for a better candidate. Today's best one, ¹⁵²Gd, is still a factor 30 away of the resonance, implying a **1000 factor** loss in any observable.
- ➤ Time evolution of these mixed states presents the phenomenon of **Atom Oscillations**. At observable times, the description is the same as any 3-level atomic system with natural **population** inversion.
- ➤ Many interesting **observables** besides spontaneous emission: probes of **daughter atom population** (both geochemical and optical) **and XFEL-stimulated X-ray emission**.