

THE HYPER-K NEAR DETECTOR PROGRAMME

JEANNE WILSON

FOR THE HYPER-K PROTO-COLLABORATION

TAUP 2017, SUDBURY

OVERVIEW

- THE HYPER-K PROJECT
 - WHY DO WE NEED NEAR DETECTORS?
- ND280 AND POTENTIAL UPGRADES
- AN INTERMEDIATE WATER CHERENKOV DETECTOR E61
- OTHER DETECTOR TECHNOLOGIES
- SUMMARY

Related Talks:

Mark Scott (Tuesday 2nd Neutrino session) The latest T2K results on neutrino oscillations and neutrino-nucleus interactions Hidekazu Tanaka (Wed 1st Neutrino session) Hyper-Kamiokande Seon-Hee Seo (Wed 1st Neutrino session) The 2nd Hyper-Kamiokande detector in Korea Hiroyuki Sekiya (Wed 2nd Neutrino session) The Super-Kamiokande Gadolinium Project Takatomi Yano (Wed 2nd Neutrino session) Astroparticle Physics in Hyper-Kamiokande

- PHYSICS MEASUREMENTS
 - LEPTONIC CP VIOLATION
 - MASS ORDERING
 - FROM ATMOSPHERIC NEUTRINO OSCILLATIONS
 - + 2ND TANK IN KOREA
 - PRECISION OSCILLATION PARAMETER MEASUREMENT
 - PROTON DECAY SEARCH
 - ASTROPHYSICAL MEASUREMENTS
 - SOLAR NEUTRINOS
 - SUPERNOVA BURST
 - SUPERNOVA RELIC NEUTRINOS

WHY NEAR DETECTORS?

$$A_{CP} = \frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})}$$

Beam v event rate ⁽²⁾ Hyper-K

Near Detector Requirements:

- Measure CCO π (& CC1 π) interactions signal channel in Hyper-K
- Intrinsic v_e component of beam from muon and kaon decays (background for appearance signal)
- Wrong-sign CC processes (background in the CPviolation measurement)
- Maximise cancellation of systematic uncertainties in extrapolation to far detector event rate prediction (due to angular acceptance, target nuclei, energy range)

https://arxiv.org/pdf/1606.08114.pdf Predicted v_e spectrum @ Hyper-K

Mass

 $\propto \frac{\sigma^{\nu_e}/\sigma^{\nu_\mu}}{\sigma^{\overline{\nu_e}}/\sigma^{\overline{\nu_\mu}}}$

ODETECTOR OPTIONS

T2K NEAR DETECTORS

Source of uncertainty	$ u_{\mu} \ CC$	$ u_{ m e} \ CC$	$ar{ u_{\mu}} \ CC$	$\bar{\nu_{ m e}}~CC$			
Flux and common cross sections							
(w/o ND280 constraint)	10.8%	10.9%	11.9%	12.4%			
(w/ND280 constraint)	2.8%	2.9%	3.3%	3.2%			
Unconstrained cross sections	0.8%	3.0%	0.8%	3.3%			
SK	3.9%	2.4%	3.3%	3.1%			
FSI + SI(+ PN)	1.5%	2.5%	2.1%	2.5%			
Total							
(w/o ND280 constraint)	11.9%	12.2%	13.0%	13.4%			
(w/ ND280 constraint)	5.1%	5.4%	5.2%	6.2%			

6

FGD2 40% water,

J Wilson, TAUP 2017 Phys. Rev. Lett. 118, 151801 (2017), arXiv:1704.06409 [hep-ex].

ND280 UPGRADES

Official T2K project since Feb 2017

Goal: reduce total systematic uncertainty in neutrino event rate in presence of oscillations at far detector to better than 4% by increasing angular acceptance

Current tracker + rotated TPCs and neutrino target detector + time of flight around new target

Increases target mass from 2.2 to 4.3 tonnes

Submitted EOI at CERN, Jan 2017 (CERN SPSC-EOI-015)

J Wilson, TAUP 2017

NEUTRINO TARGET DETECTOR

- T2K FINE-GRAINED DETECTOR (FGD) = 1 CM THICK XY EXTRUDED TIO2-COATED SCINTILLATOR BARS + MPPC READOUT
 - CAN ACCOMMODATE PASSIVE WATER TARGET REGION
 - LOW EFFICIENCY FOR VERTICAL TRACKS
- TRACKING FIBRE DETECTOR?
- SUPER FGD?
- 3D FGD BARS IN XY & Z DIRECTIONS? (25% AIR)
- WAGASCI-LIKE? (WATER-IN, WATER-OUT)

Z_{1cm}

INTERMEDIATE WATER CHERENKOV

- MEASURE CROSS SECTION ON H₂O DIRECTLY •
- **4**Π ANGULAR ACCEPTANCE
- CHERENKOV PID: •
 - pure v_{μ} -CC, v_{e} -CC and NC π^{0} samples
- CONTAIN MUONS ~0.6GEV (UP TO 1.2MEV)
- 0.7-2KM DOWNSTREAM TO REDUCE PILE-UP

NU-E CROSS SECTION

10²¹ POT exposure

OFF-AXIS SPANNING

NEUTRON CAPTURES

0.2% Gadolinium Sulphate (0.1% Gd) Captures ~90% neutrons \rightarrow ~8MeV of gammas ~25µs capture time

(cf~200 μ s & 2.2MeV γ from capture on H)

12

Neutron tagging gives us:

- Statistical separation of interaction modes
- $v_{\mu} : \overline{v}_{\mu}$ separation:

Charged Current Quasielastic (CCQE):

 $egin{array}{ccc}
u_{\mu} : &
u_{\mu} + n
ightarrow \mu^{-} + p & 0 ext{ neutrons} \ ar{
u}_{\mu} : & ar{
u}_{\mu} + p
ightarrow \mu^{+} + n & 1 ext{ neutron} \end{array}$

Measurement of neutron multiplicity

- Large model uncertainties feed into atmospheric and proton decay measurement uncertainties

MULTI-PMTS

Modular approach to PMT instrumentation.

- Array of small (~3") PMTs.
- Waterproofing, pressure protection, reduced cabling.
- Readout electronics, monitoring, calibration inside.
- Directional information improved vertex resolution.

Leveraging from KM3NeT/IceCube mPMT design.

Surface detector goals:

- Demonstrate detector calibration and precision
- ~3% precision measurement of $\sigma_{ve}/$ $\sigma_{v\mu}$
- Measure neutron multiplicities in neutrino-nucleus interactions

1 4

• Test-bed for Hyper-K

OTHER TECHNOLOGIES

HIGH PRESSURE TPC

- Less target mass than scintillator but detect more final state particles
- Investigating range of target gases
- Prototyping underway, beam test planned at CERN

Detector	Proton Energy threshold	Proton Recon Efficiency
ND280	100-500 MeV (cos $\theta > 0.4$)	µ + p ∼30%
Wagasci (water in)	125MeV	15%
Wagasci (water out)	12, 30, 45MeV	15% 27%, 55%
НРТРС	>5MeV	Work in progress
Emulsion (water target)	10MeV	84%

EMULSION DETECTOR

- NINJA collaboration prototyping
- Potential for water target
- Low energy threshold
 - V_e cross section measurement

DETECTOR OPTIONS

SUMMARY

- NEAR DETECTORS VITAL TO CONSTRAIN FLUX AND CROSS SECTION SYSTEMATIC UNCERTAINTIES FOR ACCURATE CP VIOLATION SEARCH
- NO ONE-DETECTOR-FITS-ALL
 - SUITE OF NEAR DETECTORS INCLUDING UPGRADED T2K ND280 + NEW INTERMEDIATE DETECTOR

18

BACK-UP SLIDES

CROSS SECTION POTENTIAL

Detector	Selection	Nevents	Selection Characteristics
ND280 detector, 280m	$\nu_{\mu} CC0\pi$	20k	FGD1 (1–3 GeV), $P \approx 72\%$ [51]
ND280 detector, 280m	$ u_{\mu} \text{CC1}\pi$	6k	FGD1 (1–3 GeV), $P\approx\!\!50\%$ [51]
ND280 detector, 280m	ν_{μ} CC inclusive	40k	FGD1 (1–3 GeV), $P\approx\!\!90\%[51]$
INGRID	ν_{μ} CC inclusive	17.6×10^{6}	$\epsilon > \! 70\%$ (1–3 GeV), $P = 97\%$ [191]
HPTPC, $8 \mathrm{m}^3$, $10 \mathrm{bar}$ Ne (CF ₄)	ν_{μ} CC inclusive	4.2k (18.4k)	$\epsilon\approx\!\!70\%,\mathrm{protons}>5\mathrm{MeV}$ detected
HPTPC, 8 m^3 , $10 \text{ bar Ne} (\text{CF}_4)$	$\nu_e {\rm CC}$ inclusive	80 (450)	$\epsilon\approx\!\!70\%,\mathrm{protons}>5\mathrm{MeV}$ detected
WAGASCI	$\nu_{\mu}CC0\pi$	63k	P=75%, proton reconstruction: $\epsilon \approx$
			15% at 500 MeV, water in; $\epsilon\approx 15\%$
			at $250 \mathrm{MeV}$, water out
WAGASCI	$ u_{\mu} \text{CC1}\pi$	10k	P=50% (protons as above)
WAGASCI	$\nu_{\mu} {\rm CC}$ inclusive	75k	P=96% (protons as above)
200kg Water target	ν_{μ} CC+NC inclusive	10k-20k	4π automated readout
emulsion off-axis, 280m			proton > 10-30 MeV detected
200kg Water target	ν_e CC inclusive	1k	4π automated readout
emulsion off-axis, 280m			proton > 10-30 MeV detected
1kton WC 1km	$\nu_{\mu}\text{CC0}\pi$ (1-2°,2-3°,3-4°)	1682k, 1060k, 519k	$P \approx 92\%, 95\%, 95\%$
1kton WC 1km	$\bar{\nu}_{\mu}\text{CC0}\pi$ (1-2°,2-3°,3-4°)	519k,331k,186k	$P \approx 74\%, 77\%, 76\%$
1kton WC 1km	ν_{μ} CC1 π (1-2°,2-3°,3-4°)	208k,65k,27k	$P \approx \!$
1kton WC 1km	$\nu_e \text{CC0}\pi$ (1-2°,2-3°,3-4°)	11.2k,6.9k,4.6k	$P\approx\!\!54\%,\!71\%,\!80\%$
1kton WC 1km	$\nu \mathrm{NC} \pi^0$ (1-2°,2-3°,3-4°)	300k,111k,45k	$P \approx 58\%, 63\%, 60\%$

error

HYPER-K

SENSITIVITY

Total

error

E.0 E.2

ve in neutrino mode

FIG. 131. Fractional error size for the appearance (left) and the disappearance (right) samples in the antineutrino mode. Black: total uncertainty, red: the flux and cross-section constrained by the near detector, WilsontJAUR 2017 detector non-constrained cross section, blue: the far detector error.

TABLE XXXVII. Uncertainties for the expected number of events at Hyper-K from the systematic uncertainties assumed in this study.

		Flux & ND-constrained	ND-independent	Far detector	Total
		cross section	cross section	Far detector 0.7% 1.0% 1.5% 1.1%	
	Appearance	3.0%	0.5%	0.7%	3.2%
νmode	Disappearance	3.3%	0.9%	1.0%	3.6%
$\overline{\nu} \mod \operatorname{Ap}_{\operatorname{Diss}}$	Appearance	3.2%	1.5%	1.5%	3.9%
	Disappearance	3.3%	0.9%	1.1%	3.6%

vu in neutrino mode

Expected significance to exclude $\sin \delta_{CP} = 0$ in case of normal hierarchy.

DETECTOR OPTIONS

	v _e x-Sec	4π	H ₂ O x-sec	NC, v _e Bg	Neutron # (Gd)	v Energy response	Wrong sign Bg	Hadronic FS	Beam Dir
INGRID	0	0	0	0	0	0	0	0	5
ND280	2	3	3	2	0	2	5	2	1
ND280 Upgrade (WAGASCI)	2	4	4	2	0	2	5	2	1
НРТРС	0	5	0	1	0	3	3	5	1
nuPRISM style WC	4	5	5	4	3	4	1	1	3
TITUS style WC	4	5	5	4	4	2	3	1	1

$5 = Strong^*$, 0 = no information

Not quantitative!

Each column relates to a systematic uncertainty

