Sterile Neutrino Dark Matter Searches with X-Ray Sounding Rockets

Antonia Hubbard

Northwestern University

Micro-X Science

1st flight: February 2018 Puppis A SNR observation

- Energy and spatial information
- 2.5' PSF

2nd flight: August 2019 Sterile neutrino search

Photon bucket

NU

Up first: SNRs

- High spectral/angular resolution observation of extended X-ray sources with unique combination of bandpass, collecting area, resolution
 - SNR size makes high spectral resolution observations with grating instruments challenging
- Microcalorimeters can study detailed atomic physics of the plasma
 - Determine temperature, turbulence, elemental abundances
 - Look for evidence of charge exchange
 - Look for clues to gamma-ray emission from shock regions

Detecting Sterile Neutrinos

- Indirect detection: decay to a photon and active neutrino in a loop-suppressed process mediated by oscillation between the active and sterile states
 - X-ray line at half the neutrino mass
- All-sky signal due to our location within the dark matter halo of the MW
 - Signal depends on flux along line-of-sight
 - Sensitivity improved by increasing FOV

Antonia Hubbard

Have we found dark matter?

- Sterile neutrino in the keV range is a good dark matter candidate
- Anomalous line at 3.5 keV detected in XMM-Newton, Chandra, Suzaku, and NuSTAR data to high significance
- Instrumental explanation is unlikely
 - Observed across 6 detectors
 - Proper redshift
- Atomic explanation is not trivial
 - Must explain observations and nonobservations
 - Anomalous line ratios of 10-20x required
 - Varying line flux contradicts atomic data

Antonia Hubbard

Status of the field

	XMM-Newton	Chandra	Suzaku	Hitomi
Stacked clusters	+			
Andromeda	±			
Perseus	+	+	±	-
Coma, Virgo, Ophiucus	+	-	-	
MW GC	+	-		
Other clusters	+			
Stacked galaxies	-	-		
MW dwarfs	-			
Draco	±			

Riemer-Sorenson (1405.7943) Jeltema & Profumo (1408.1699) Boyarsky et al (1408.2503) Malyshev et al (1408.3531) lakubovskyi et al (1508.05186) Anderson et al (1408.4115) Urban et al (1411.0050) Tamura et al (1412.1869) Jeltema & Profumo (1512.01239) Ruchayskiy et al (1512.07217) Bulbul et al (1402.2301) Boyarsky et al (1402.4119) Franse et al (1604.01759) Bulbul et al (1605.02034) Aharonian et al (1607.07420) Cappelluti et al (1701.07932)

These observations are systematics-dominated - we need higher resolution detectors!

	XMM-Newton	Chandra	Suzaku	Hitomi
Stacked clusters	+			
Andromeda	±			
Perseus	+	+	±	-
Coma, Virgo, Ophiucus	+	-	-	
MW GC	+	-		
Other clusters	+			
Stacked galaxies	-	-		
MW dwarfs	-			
Draco	±			

Riemer-Sorenson (1405.7943) Jeltema & Profumo (1408.1699) Boyarsky et al (1408.2503) Malyshev et al (1408.3531) lakubovskyi et al (1508.05186) Anderson et al (1408.4115) Urban et al (1411.0050) Tamura et al (1412.1869) Jeltema & Profumo (1512.01239) Ruchayskiy et al (1512.07217) Bulbul et al (1402.2301) Boyarsky et al (1402.4119) Franse et al (1604.01759) Bulbul et al (1605.02034) Aharonian et al (1607.07420) Cappelluti et al (1701.07932)

Microcalorimeter Sounding Rockets NU

- XQC (Wisconsin): 6 flights from 1995 2014
 - Si thermistor array with a ~50 mK operating temperature
 - High resolution (23 eV FWHM at 3.3 keV) and wide FOV (32.3° radius)
- 2011 anti-GC observation (I = 165° , b = -5°) with an effective exposure of 106 s
 - Large FOV observations of the GC have better signal-to-noise since the signal is all-sky while backgrounds are dominated by GC/GR (±5° from the plane) rather than CXB

NU **XQC** Sterile Neutrino Results

data - model

XQC Sensitivity

- Unbinned maximum likelihood set the upper limit for an unidentified line above the background model
- Upper limit on the flux of 0.17 counts/cm²/s at 95% CL
 - Not sensitive enough to rule out Boyarski's MW detection
 - Requires more data (photon-starved)

ΝП

Fly a 128-pixel TES microcalorimeter array in a vibration-isolated ADR on a sounding rocket

ΝH

ΝH

TAUP - July 2017

Antonia Hubbard

Micro-X Detector: TESs

- X-rays hit an absorber weakly connected to a cold bath and create a "pulse"
- TESs use a superconducting film biased into the transition to yield large resistance changes for small temperature changes
 - Demonstrated 2 eV (FWHM) resolution at 6 keV
- The Micro-X array: 128 590 µm x 590 µm pixels
 - Au/Bi absorbers with a Mo/Au TES

Micro-X Detector: Overview

- X-rays enter the telescope through a gate valve
- 5 filters allow X-rays while blocking IR/optical photons
- Calibration source (KCl fluoresced by Fe-55) directly adjacent to detectors tracks changes
- 2 readout chains store data (16 GB) and transmit 30% in-flight (44 Mbit/s)

3.26

100

80

60

40

20

20

-10

Residual 10 E_shift: -0.11 ± 0.1 eV

Counts: 2397

2:1.03

y0: 0.0 ± 0 counts

Algorithm: add 1 to data

Amplitude: 78.3 ± 2 counts

3.28

3.30

3.32

Counts

E_shift: -0.09 ± 0.11 eV

Counts: 2242

²:0.93

20 -

20 -

0 -10 -

-20

Residual 10 -

werkerkelberaren er

3.34

Energy [keV]

y0: 0.0 ± 0 counts

Algorithm: add 1 to data

Amplitude: 69.8 ± 2 counts

2.56 2.58 2.60

0-

2.62 2.64 2.66

Energy [keV]

5870

5880

5890

Energy [eV]

5900

5910

5920

Micro-X Data: Resolution

Antonia Hubbard

NU

Micro-X Status

- Taking pulse data in flight configuration
 - Cryostat, calibration source, timemultiplexed SQUID readout, flight electronics, data readout
- Past 2 years: instrument has passed all functionality tests and improved mechanical, thermal, electrical performance
 - Vibration isolation: stay at 75 mK for 9 hours and can withstand 5 "launches"
 - Improved electronics noise
 - ADR flight controls (temperature, magnet)
- Current work: optimization (noise abatement) and integration
- Launch expected February 2018

GC Backgrounds

Micro-X Projected Spectrum

Figueroa+ 1506.05519

NU

Sterile Analysis Modeling: Signal

- Projected 300s GC observation corresponds to 5.6σ significance
 - 18.2 total signal events
 - 3.4 background events in 2.5 eV (±1σE) bin
 - 4.5 cts/cm²/s/keV at 3.5 keV
 - Boyarsky: 1.4 Ms with 7,500 signal and 500,000 background counts
- Strongest lines are from K XVIII and CI XVII, with <1 event/ observation

3.5 keV Morphology

- Back-to-back flights of XQC and Micro-X will allow profile measurements of a 3.5 keV observation
- The flux in the XQC's wider FOV compared to that in Micro-X observation • will distinguish between a point-source or extended-source origin
- Multiple Micro-X flights will allow Doppler mapping of an observed line

Conclusions

NU

- Large FOV sounding rocket microcalorimeters have unique sensitivity to X-ray signatures from dark matter interactions
 - Open up new sensitivity beyond what we can do with current satellites!
- These flights are photon-starved, so more flights = higher sensitivity
- First flight (SNRs) in February 2018, and sterile neutrino flight from Australia in 2019

Antonia Hubbard