> Cecilia Lunardini

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

Cecilia Lunardini

Arizona State University

Alankrita Priya and CL, arXiv:1705.02122, funded by DOE/NSF

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction: Diffuse Supernova Neutrino Background

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardini

• Cosmological flux, image of diverse supernova population

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

• Constant in time. Searches are background-limited

SuperK limit: Bays et al., PRD 85, 2012 052007

Update: towards realistic predictions

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardini

• on the diverse SN population: stars collapsing into black holes (*failed supernovae*) CL, PRL 102, 2009

stronger observational case

Horiuchi et al., MNRAS Letters 445 (2014) L99; Kochanek, ApJ 785 (2014) 28; Kochanek et al., ApJ 684 (2008) 1336

• new, systematic simulations of BH formation

K. Sumiyoshi et al., PRL 97 (2006); M. Liebendorfer, et al., AIP Conference Proceedings 586 (2001) 472477; Ugliano, et al., ApJ 757 (2012) 69; OConnor and Ott, ApJ 762 (2013) 126; Nakazato et al., ApJ 804 (2015) no.1, 75; Pejcha & Thompson, ApJ 801 (2015) 90. Ertl, et al., ApJ 818 (2016) 124; Mirizzi, et al., Riv. Nuovo Cim. 39 (2016)

> Cecilia Lunardini

- largest, *cleanest* detectors being built: JUNO, SuperK-Gd
 - detection likely within \sim 10 years!
 - new, realistic background studies

Moellenberg et al., PRD 91 (2015); An et al., J. Phys. G, 43 (2016) 030401; H. Kunxian, PhD thesis, Kyoto University, 2015.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Formulation: integrating over the SN population

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardini

• integrate over redshift and progenitor star mass:

$$\Phi(E) = \frac{c}{H_0} \int_{8M_{\odot}}^{125M_{\odot}} \int_0^{z_{max}} \dot{\rho}(z, M) \frac{dF_{\bar{e}}(E(1+z), M)}{dM} \frac{dz}{\sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}} dM$$

• SN rate \propto star formation rate; $z \lesssim 1$ and smaller M dominate

$$\begin{split} \dot{\rho}(z,M) &= R_{SF}(z) \frac{\phi(M)}{\int_{0.5M_{\odot}}^{125M_{\odot}} M\phi(M) dM} \ , \qquad \phi(M) \propto M^{-2.35} \\ R_{SF}(z) &= \mathcal{O}(10^{-2}) \ \mathrm{M_{\odot}Mpc^{-3}yr^{-1}} \begin{cases} (1+z)^{3.28} & 0 < z < 1 \\ 2^{3.54}(1+z)^{-0.26} & 1 < z < 4.5 \\ 2^{3.54}5.5^{7.54}(1+z)^{-7.8} & 4.5 < z < 5 \end{cases} \end{split}$$

• oscillations included: $F_{\bar{\nu}_e} = \bar{\rho}F^0_{\bar{\nu}_e} + (1-\bar{\rho})F^0_{\bar{\nu}_x}$ $\bar{\rho} \simeq 0 - 0.68$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Simulations: mapping BH formation

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardini

• high- and medium-M stars can produce failed SN

Ugliano, et al., ApJ 757 (2012) 69; Pejcha & Thompson, ApJ 801 (2015) 90.

• detailed u spectra available for $M/M_{\odot}=11.2,25,25(BH),27,40(BH)$ L. Hudepohl, PhD thesis, 2013

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

> Cecilia Lunardini

• Failed SN (BHFC): higher luminosity, hotter spectra!

Run (Type)	${\rm Mass}/M_{\odot}$	\mathcal{L}_{ν_e}	$\mathcal{L}_{\bar{\nu}_e}$	\mathcal{L}_{ν_X}	$\langle \epsilon \rangle_{\nu_{e}}$	$\langle \epsilon \rangle_{\bar{\nu}_{\rm e}}$	$\langle \epsilon \rangle_{\nu_{\chi}}$
		[10 ⁵² ergs	5]		[MeV]	
s11.2c (NSEC)	11.2	3.56	3.09	3.02	10.43	12.89	12.93
s25.0c	25	7.18	6.78	6.02	12.67	15.5	15.41
s25.0c (BHFC)	25	7.08	6.51	3.7	15.32	18.2	17.62
s27	27	5.87	5.43	5.1	11.3	13.89	13.85
(NSFC) s40.0c (BHFC)	40	9.38	8.6	4.8	15.72	18.72	17.63

Results from Garching group:

L. Hudepohl, PhD thesis, 2013 (advisor, H. T. Janka); Mirizzi, et al., Riv. Nuovo Cim. 39 (2016).

Results

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardini

• failed SN dominate at $E\gtrsim 20-30$ MeV

 \bullet uncertainty band: $\sim 25\%$ on the SN rate normalization, varying BH-formation pattern

Detectability: JUNO

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardini

- 17 kt liquid scintillator, $\bar{\nu}_e + p \rightarrow n + e^+$
- ≥ O(10²) reduction of fast neutrons and atmospheric NC backgr.
- efficiency $\epsilon \sim 50\%$ after background cuts

An et al., J. Phys. G, 43 (2016) 030401, see also Moellenberg et al., PRD 91 (2015).

Detectors	energy range (MeV)	NSFCs	BHFCs	Total DSNB	Background	P _{ev} (%)
Liquid Scintillator	((1.30)	
JUNO (10 yrs)	11-30	7.14	3.04	10.18	8.02 (17)	64
		[7.43]	[7.53]	[14.96]		[91.5]

 P_{ev} = probability that, *if our model is true*, an excess larger than 3σ ($n_{obs} > N_{3\sigma}$) is realized with respect to background only.

Detectability: SuperK-Gd

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardini

Beacom and Vagins, PRL 93 (2004) 171101

- 22.5 kt water, $ar{
 u}_e + p
 ightarrow n + e^+$, *n* capture on Gd
- reduction of spallation, sub-Cherenkov muons
- NC atmospheric previously not included
- signal efficiency $\epsilon \sim 67\%$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

H. Kunxian, PhD thesis, Kyoto University, 2015.

Cecilia Lunardini

Detectors	energy range (MeV)	NSFCs	BHFCs	Total DSNB	Background $(N_{3\sigma})$	P _{ev} (%)
SuperK-Gd (10 yrs)	12-26	7.5	3.24	10.74	28.3 (44)	23
		[7.78]	[8.01]	[15.8]		[52.3]

high significance excess is moderately likely

Analyzing two detectors together

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardin

 $H_0 =$ Background only; $H_1 =$ Signal+Background. Blue (squares): likelihood($p|H_1$) /likelihood($p|H_0$) $\geq 10^3$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Beyond JUNO: Slow Liquid Scintillator

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardini

- separation of Cherenkov and scintillation light; reduction of NC atm. background
- signal efficiency $\epsilon \simeq 90\%$

• $P_{ev} \gtrsim 98.5\%$

Wei, Wang and Chen, PLB 769 (2017) 255 261.

Conclusions

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardini

- up to \sim 50% of a DSNB signal might be due to (rare) failed supernovae
 - probing black hole birth! Interdisciplinary implications...
- NC atmospheric background limits sensitivity at JUNO and SuperK-Gd
 - chances of detection in 10 years are moderate-to-high
 - progress is needed on reducing NC background and/or improving signal efficiency

> Cecilia Lunardini

BACKUP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

> Cecilia Lunardini

э

> Cecilia Lunardini

Detectors	energy range (MeV)	NSFCs	BHFCs	Total DSNB	Background (N _{3σ})	P _{ev} (%)
Liquid Scintillator						
JUNO	11-30	7.14	3.04	10.18	8.02 (17)	64
		[7.43]	[7.53]	[14.96]		[91.5]
SLS	11-30	12.85	5.47	18.32	5.95 (14)	98.7
		[13.37]	[13.55]	[26.92]		[99.7]
Water Cherenkov						
SuperK-Gd	12-26	7.5	3.24	10.74	28.3 (44)	23
		[7.78]	[8.01]	[15.8]		[52.3]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

> Cecilia Lunardin

・ロト ・ 日 ・ ・ ヨ ・

æ

Chance of high significance excess?

The Diffuse Supernova Neutrino Background, an update: theory and detection prospects

> Cecilia Lunardini

the observed number of events n_{obs} fluctuates with respect to the true value, n.

- *H*₀: background only hypothesis
 *H*₁: background + signal (this model) hypothesis
- P_{ev} = probability that, *if* H_1 *is true*, an excess larger than 3σ ($n_{obs} > N_{3\sigma}$) with respect to H_0 is realized in the detector

-