

Université Laurentienne Laurentian University

Annual modulation of the atmospheric muon flux measured by the OPERA experiment

Nicoletta Mauri (University of Bologna and INFN) on behalf of the OPERA Collaboration

15th International Conference on Topics in Astroparticle and Underground Physics, TAUP2017 Sudbury, Canada, July 25th, 2017

The atmospheric muon flux modulation

- The atmospheric muon flux modulation has been studied and measured by several underground experiments
 - Depends on the relative weight of muons from pion and kaon decays
 - Depends on the **depth** (E_{μ})
 - No modulation expected for the prompt component (up to 10⁷ GeV)
- Characteristics of the annual modulation in terms of period/phase → sinusoidal fit and Lomb-Scargle analysis → comparison with Dark Matter modulated signals
- Correlation between relative variations of the effective temperature T_{eff} and of the measured rate $I_{\mu} \rightarrow \alpha_{T} \rightarrow K/\pi$ production ratio

Inclusive production of muons

The OPERA experiment

Discovery of $v_{\mu} \rightarrow v_{\tau}$ oscillations in appearance mode

Phys. Rev. Lett. 115, 121802 (2015)

Full coverage of the parameter space for the atmospheric neutrino sector

- Long baseline neutrino oscillation experiment located in the CNGS (CERN Neutrinos to Gran Sasso) $\nu_{\rm u}$ beam
- Direct search for $v_{\mu} \rightarrow v_{\tau}$ oscillations detecting the τ lepton produced in v_{τ} CC interactions (appearance mode)

The OPERA detector

Target + magnetic spectrometer (1.53 T) at LNGS, average overburden ~3800 m.w.e., drift tubes + RPC + scintillators, detector angular window $0^{\circ} < \theta < 90^{\circ}$

OPERA as a cosmic ray detector

CNGS beam events identified through a timing coincidence with the beam spill \rightarrow cosmic events collected during the physics run

Atmospheric muon flux in OPERA

Sinusoidal modulation approximation

Comparison with Dark matter modulated signals

$$I_{\mu} = I_{\mu}^{0} + \Delta I_{\mu} = I_{\mu}^{0} + \delta I_{\mu} \cos\left(\frac{2\pi}{T}(t - t_{0})\right) \rightarrow \text{period T and phase } \mathbf{t}_{0}$$

 \succ Correlation between relative variations in rate I_{μ} and temperature T_{eff}

$$\frac{\Delta I_{\mu}}{I_{\mu}^{0}} = \alpha_{T} \frac{\Delta T_{\text{eff}}}{T_{\text{eff}}^{0}}$$

Temperature data extracted from European Center for Medium-range Weather Forecasts (ECMWF)

$$T_{\rm eff} = \frac{\int_0^\infty dX T(X) W(X)}{\int_0^\infty dX W(X)}$$

Relative Weight 0.2 0.4 0.6 0.8 P (hPa) Height (km) Temp -Weight 10 30 20 10² 10 10 0 220 300 240 260 280

 \rightarrow Effective temperature

correlation coefficient α_{T}

T (K)

7

Modulation Period and Phase

Correlation with temperature variations

Variations in temperature closely reflected by variations in muon rate (also on small time scales)

N. Mauri, TAUP2017

Cross-correlation between T_{eff} and I_{μ}

Cross correlation of temperature and rate time series

Cross-correlation between T_{eff} and I_{u}

Correlation function of temperature and rate time series

Conclusions and Outlook

> The OPERA detector was exploited for the measurement of the atmospheric muon rate seasonal modulation at LNGS \rightarrow 3800 m w.e. depth corresponding to E_u > I TeV

- Preliminary data with the complete OPERA statistics 2008-2012
- Modulation measured for single muon events
- Preliminary results:
 - Period and phase of the modulation compatible with expectations and other experiments: T = (365 ± 2) days and phase = (176 ± 4) days (Maximum on 25 June)
 - ➤ Cross correlation between muon rate and temperature time series: correlation function peaked at Δt = 0 days!
 - > Effective temperature correlation coefficient $\underline{\alpha_T} = 0.94 \pm 0.04$ compatible with expectations based on π -K contributions and other LNGS experiments
- <u>Outlook:</u>
 - > Possibility to determine the K/ π production ratio, combining the results from the muon charge ratio measurement (Z_{pK+} moment $\rightarrow R_{K/\pi}$)
 - > Paper soon!

Thank you for your attention!

Image taken using an **OPERA nuclear emulsion film** with a pinhole hand made camera courtesy by Donato Di Ferdinando