

Calibrating Inner-Shell Electron Recoils in a Xenon Time Projection Chamber

Dan Baxter

July 25, 2017

XV International Conference on Topics on Astroparticle and Underground Physics

Office of Science

Direct Detection

- Searching for the small amount of energy deposited by the interaction of a dark matter particle with normal matter
- Nuclear Recoils:
 - WIMPs (dark matter)
 - Neutrons
- Electron Recoils:
 - Neutrino-electron scatters
 - Gamma/X-ray scatters
 - Beta decay
- Other...
 - Alpha decays
 - Muons

Direct Detection

- Nuclear Recoils:
 - WIMPs (dark matter)
 - Neutrons
- Electron Recoils:
 - Neutrino-electron scatters
 - Gamma/X-ray scatters
 - Beta decay
- Other...
 - Alpha decays
 - Muons

- Can't calibrate detector's efficiency to WIMP scatters directly
- Use neutron single-scatters to simulate nuclear recoils from dark matter
 - Calibrate ER backgrounds using either external gamma-decays or internal beta-decays
 - Is it a valid assumption to say a beta decay and a neutrino-electron scatter look the same?
- Not going to talk about these...

PICO Bubble Chambers

See the following talks for more information:

PICO Talks

- First demonstration of a scintillating xenon bubble chamber for dark matter and CEvNS detection (J. Zhang) Mon 1:15pm
- Threshold verification in the PICO-60 detector and study of the growth and motion of nucleation bubbles (P. Mitra) Mon 2:45pm
- PICO Results and Outlook *plenary (C. Krauss) Tue 9:50am
- PICO-500: Simulations for a 500L bubble chamber for dark matter search (E. Vázquez Jáuregui) Tue 4:30pm

PICO Posters

- Nuclear recoil calibration for PICO bubble chambers (M. Jin)
- PICO-60: World's largest bubble chamber for dark matter detection (U. Chowdhury)
- The PICO-40L detector design (B. Loer)

- Superheat any liquid such that it has a ~keV energy threshold to boil
- Need energy deposited within a critical radius to make a bubble (dE/dx threshold)

PICO Electron Recoils

- Electrons have a low dE/dx, making them very inefficient at nucleating bubbles
- Use external gamma sources to calibrate the probability of electron recoils to make an event
- Rejection depends largely on choice of target fluid

The difference is from the iodine, and we hypothesize that heavy target fluids have a higher probability to nucleate a bubble.

Why the difference?

- 'CYRTE' detector was previously filled with CF3I before being filled with C3F8
- Electron recoil rejection completely dominated by interactions on iodine despite residual abundance...
- Effect is <u>atomic</u> and not <u>fluid</u> dependent

We need a mechanism. Why is iodine (or other heavy elements) so much more sensitive to electron recoils?

Auger Cascades

- Consider a neutrino or photon scattering off of the L-shell of iodine or xenon
- The initial electron kicked out loses its energy just like a beta decay

e-Auger Electron

 The vacancy it leaves behind will be filled by another electron with the energy difference released in either an x-ray or Auger electron emission

Auger Cascades

- This will propagate
 outwards until the full
 binding energy of the
 original electron is released
- Because the constituents are all very low energy, the net dE/dx is larger than for a single 5keV piece
- This is significant enough to yield a many orders of magnitude higher probability of nucleating a bubble in the bubble chambers
- What does it mean for other types of detectors?

Xenon

Time Projection Chambers (TPCs)

- An interaction generates a pulse of scintillation light (S1) and electrons
- The electrons are drifted to a liquid-gas interface, where they are extracted
- The high extraction field accelerates the electrons, producing a second burst of light (S2)
- The time difference between the pulses tells the height of the event.

TPC Calibration

- The collaborations using xenon TPCs (LUX, XENON1T, PandaX-II) calibrate their detectors using injected beta decays from tritium or radon
- A significant fraction of the background budget for LZ is neutrino-electron and Compton scatter events, which include an inner-shell component
- L- and M- shell binding energies fall within the energy range of interest
- Beta-decay isotopes do not calibrate for this effect

Implications

- The standard profile-likelihood analysis relies on tritium beta decays accurately simulating all electron-recoil backgrounds
- Differences in energy deposition due to Auger cascades could lead to second-order deviations from the calibrated model
- The profile likelihood analysis could interpret this difference as a WIMP signal

XELDA detector

(Xenon Electron-recoil L-shell Discrimination Analyzer)

- Goal: Build a detector to perform a direct, high-statistics cross calibration of tritium beta decay against the relaxation following inner-shell scatters
- How: Xe-127 decays by electron capture. In a small detector, the associated gammas are lost, leaving ONLY the energy deposited by the resulting cascade.
- Plan: Simultaneous tritium and Xe-127 will allow us to look for small deviations without systematics

XELDA detector

modeled after the MiX detector

Detector Design

- Use top PMT array for XY and trigger
- Use bottom PMT to see small S1
- Detector dimensions:
 - Diameter: 63.5mm
 - Cathode to Gate: 12.7mm
 - Gate to Anode: 6.4mm
- Operating conditions:
 - Drift field: 300 V/cm
 - Extraction field: 10 kV/cm

Detector Calibration

- Use blue LED to calibrate single photon sensitivity
- Seeing single phe peak in all five PMTs

 Definitely still room for noise reduction

Sample Event

Energy Calibration

Inject Kr-83m to look at S1/S2 response of 42keV line

Conclusions

- Inner-shell electron recoils could contribute important corrections to existing background model
- XELDA detector works!
- Now completing analysis chain
- Light simulation will allow XYZ corrections and fiducialization (soon)
- Tritium and Xe-127 ready to inject
- Need to challenge the assumption that all electron recoils are alike

Thank you!

- DoE SCGSR Fellowship Program (for paying me)
- XELDA group: Hugh Lippincott, C. Eric Dahl, Amy Cottle, Dylan Temples, Makayla Trask
- Fermilab technicians: William Miner, Kelly Hardin, Ronald Davis
- University of Michigan LUX group (especially Scott Stephenson): XELDA detector is modeled after the MiX detector
- Ben Loer for dagman software package and related assistance
- Luca Grandi for Kr-83 calibration source
- Carter Hall for tritium calibration source
- PICO and LZ collaborations for continued support