Overview of Project 8 and Progress Towards Tritium Operation

Walter C. Pettus on behalf of the Project 8 Collaboration University of Washington

TAUP 2017 : XVth International Conference on Topics in Astroparticle and Underground Physics

Tritium Beta Decay Endpoint

Massive neutrinos manifest in distortion of beta decay spectrum

> Tritium has provided best direct neutrino mass limits to date

- Q-value: 18.6 keV
- Half-life: 12.3 yr
- Superallowed decay
- But only 2.10⁻¹³ decays in last eV of spectrum

> Mass scale benchmarks

- $-~m_{\nu e} \stackrel{\scriptstyle <}{\scriptstyle \sim} 2~eV$: current limit
 - Mainz and Troitsk
- m_{ve} < 0.2 eV : anticipated current-generation experimental limit
 - KATRIN
- m_{ve} > 0.05 eV (0.009 eV): allowed range under inverted (normal) hierarchy
 - From oscillation experiments

Cyclotron Radiation Emission Spectroscopy (CRES)

> Frequency of cyclotron radiation related to energy of electrons:

$$f_c = \frac{1}{2\pi} \frac{eB}{(m+E_{kin})}$$

- f_c = 25 26.5 GHz cyclotron frequency range in Project 8
 - *B* = 0.9459 T magnetic field
 - $E_{kin} = 0 30$ keV for ^{83m}Kr conversion electrons
- 1 fW of radiated power at 18 keV (tritium endpoint)

> Advantages:

- Differential spectrum measurement
- Source gas is transparent to its own cyclotron radiation
 - No limit to source size from self-attenuation
- Excellent energy resolution from frequency measurement

25 July : TAUP 2017

Project 8 Experiment

A phased tritium beta endpoint experiment to measure the electron neutrino mass

- > Phase I (Complete)
 - First demonstration of CRES technique with ^{83m}Kr
- > Phase II (2015-2018)
 - First tritium measurement with CRES
 - Endpoint determination to ~30 eV
 - see also Mathieu Guigue, Thurs. parallel
- > Phase III (2016-2022)
 - CRES demonstration in 200 cm³ free space volume
 - Neutrino mass sensitivity of ~2 eV

> Phase IV (2017+)

– Atomic tritium endpoint measurement with $m_{\rm v}$ ~ 40 meV projected sensitivity

25 July : TAUP 2017

Phase I

"Tabletop" demonstrator of CRES technique

- > Commercial warm-bore superconducting NMR magnet operating at 1T
- > WR42 rectangular waveguide to confine gas and collect cyclotron radiation

Phase I

Walter C. Pettus

"Tabletop" demonstrator of CRES technique

- > Commercial warm-bore superc 1T NMR magnet
- > WR42 rectangular waveguide to gas and collect cyclotron radiat

30.20

25 July : TAUP 2017

30.25

30.30

30.35

Track Initial Energy [keV]

A. Ashtari Esfahani et al. J. Phys G 44, 162501 (2017) 5

30.40

30.45

30.50

Phase II

> Upgrade gas system and cell for tritium compatibility and signal-to-noise performance

Phase II Gas Cell

> Circular waveguide

- Recover signal by matching polarization
- Larger effective area

> CaF₂ windows

– Tritium compatibility

> **5 trap coils**

- Greater flexibility of trapping geometry

> Off-axis ESR magnetometers

- Higher precision BDPA ESR agent
- In situ monitoring of trapping field

> Tickler port

- In situ RF calibration

> Waveguide short

Recover signal from reflection

Phase II

Ø 0.396"

0.42"

Phase I

0.17"

Phase II Noise Reduction

> Cryogenic circulator improves noise performance

- Lower absolute noise level from 45 K termination
- Reduced frequency dependence by eliminating a standing wave

Cryogenic amplifier

Dual^{83m}Kr/T₂ Gas System

All metal valves for tritium compatibility

> Getter for tritium pressure regulation

and emergency

automatic shutoff

Simultaneous control of ^{83m}Kr and T₂ gas sources

Walter C. Pettus

25 July : TAUP 2017

UNIVERSITY of WASHINGTON

Dual ^{83m}Kr/T₂ Gas System

Pressure regulation via coarse steps of getter temperature/current

> Safety review complete; tritium has arrived at UW

25 July : TAUP 2017

Phase III

- > Scale up to 200 cm³ physical volume inside an MRI magnet
- > Ring array of antennas detects free-space cyclotron radiation
 - Digital beam-forming used to localize signals

48-element array simulation

25 July : TAUP 2017

UNIVERSITY of WASHINGTON 12

Phase IV

> Sensitivity beyond inverted hierarchy requires atomic tritium

Width of final state distribution an irreducible systematic for T₂

> Target design is 10¹⁸ atoms at 50 mK confined in a loffe trap

Conclusion

- > We have demonstrated Cyclotron Radiation Emission Spectroscopy as a novel technique with a promising future in a next-generation neutrino mass experiment
 - Phase I achieved few-eV resolution of ^{83m}Kr spectrum
 - Approaching natural linewidth of ^{83m}Kr source
 - Phase II in final preparation for tritium run
 - Tritium arrived and approved for use
 - R&D underway towards Phase III and IV
- > More Phase II data and analysis details from Mathieu Guigue on Thursday at 16:00 in New Technologies 4 session

Project 8 Collaboration

University of California, Santa Barbara

Benjamin LaRoque

Case Western Reserve University

– Benjamin Monreal, Yu-Hao Sun

Johannes Gutenberg University, Mainz

– Sebastian Böser, Christine Claessens, Alec Lindman

Karlsruhe Institute of Technology

- Thomas Thüemmler, Marcel Walter

Lawrence Livermore National Laboratory

– Kareem Kazkaz

Massachusetts Institute of Technology

Nicholas Buzinsky, Joseph Formaggio, Joseph Johnston, Valérian Sibille, Evan Zayas

Pacific Northwest National Laboratory

 Erin Finn, Mathieu Guigue, Mark Jones, Noah Oblath, Jonathan Tedeschi, Brent VanDevender

Pennsylvania State University

- Luiz de Viveiros, Timothy Wendler

Smithsonian Astrophysical Observatory

- Shep Doeleman, Jonathan Weintroub, Andre Young

University of Washington

 Ali Ashtari Esfahani, Raphael Cervantes, Peter Doe, Martin Fertl, Eric Machado, Walter Pettus, Hamish Robertson, Leslie Rosenberg, Gray Rybka

Yale University

– Karsten Heeger, James Nikkel, Luis Saldaña, Penny Slocum

