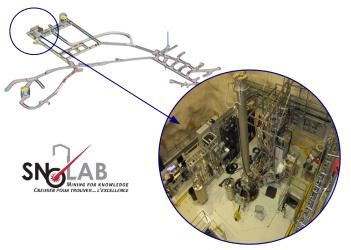
Energy response and position reconstruction in the DEAP-3600 dark matter experiment TAUP 2017, Sudbury

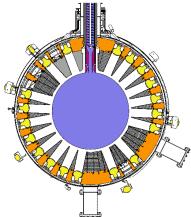
Stefanie Langrock

on behalf of the DEAP-3600 collaboration stefanie.langrock@snolab.ca

Laurentian University

24/07/2017





Located at SNOLAB, $2\,\mathrm{km}$ underground at $6000\,\mathrm{mwe}$:

The experiment:

Running stable since November 2016

- Pixelated detector
- capable to hold 3600 kg LAr target material, currently filled to 3260 kg
- 255 PMTs to measure energy and position of events in the LAr
- AV coated with wavelength shifter TPB
- Detection of WIMPs via nuclear recoils with a target sensitivity to WIMP-nucleon cross secion 10⁻⁴⁶ cm² at WIMP masses of 100 GeV

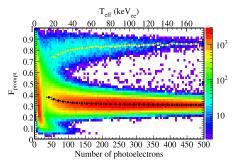
Radioactive Calibration Sources

 39 År

Internal source

- β^- emitter with $Q=565\,\mathrm{keV}$
- From cosmic ray interaction on ⁴⁰Ar
- Isotropically distributed in LAr

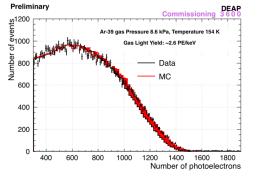
External source


S. Langrock

Cal F

Discriminating the ³⁹Ar signal using PSD:

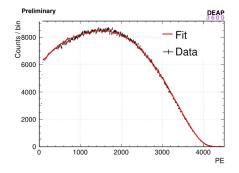
$$f_{\rm prompt} = \frac{q_{\rm prompt}}{q_{\rm event}}$$


DEAP-1 calibration data Astroparticle Physics 85 (2016) 1-23

 Ar Dimer states with different life times:

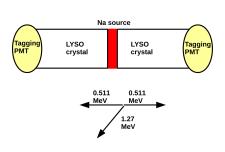
- Singlet τ 6 ns -predominantly nuclear recoils
- $\bullet \ \, \text{Triplet} \, \tau \, 1500 \, \text{ns -predominantly} \\ \text{electromagnetic events}$
- → Percentage of light signal in prompt light as indication of singlet state population

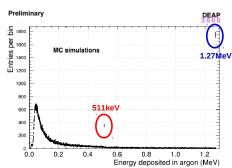
Understanding the energy response using ³⁹Ar, Gas phase calibration:

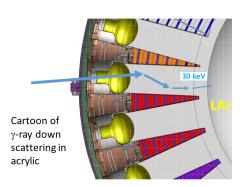

 Light yield uniformly scaled to match the simulation to data

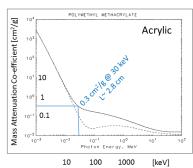
Cool down phase, before fill

Understanding the energy response using ³⁹Ar, LAr phase calibration:

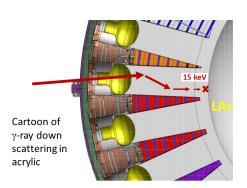

 Light yield uniformly scaled to match the simulation to data

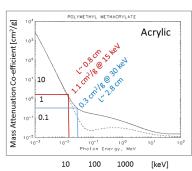

First fill data


External ²²Na source allows tagged monoenergetic gamma rays:



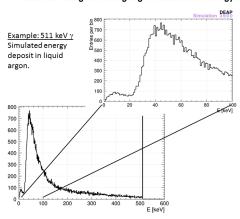
The low energy feature

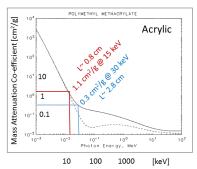




Plot and data from NIST.gov X-ray mass attenuation coefficients

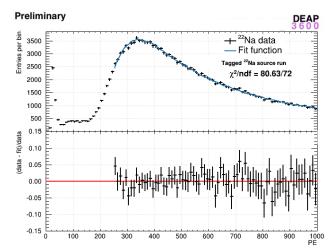
The low energy feature




Plot and data from NIST.gov X-ray mass attenuation coefficients

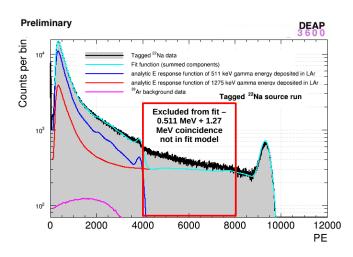
The low energy feature

Both the Rising and Falling Edge in Distribution Energy Deposit Arise from Electromagnetic Physics



Plot and data from NIST.gov X-ray mass attenuation coefficients

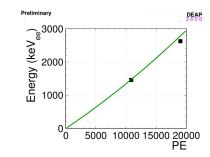
Fits on the ²²Na spectrum: Fit on low energy feature



S. Langrock

Fits on the ²²Na spectrum:

Fit on full spectrum: consistency check only



S. Langrock

Combining ³⁹Ar and ²²Na:

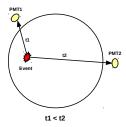
Saturation effects at high energies not yet accounted for

WIMP ROI:
$$80 - 240 \, \text{PE}$$

$$c_0 + c_1 \mathsf{PE} + c_2 \mathsf{PE}^2$$

Preliminary light yield:

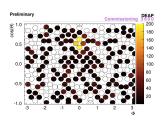
$$LY=7.36^{+0.61}_{-0.52}({
m fit\ syst.})\pm0.22({
m SPE\ syst.}){
m PE/keV}_{ee}$$
 @ $80\,{
m PE}$


Two main approaches possible:

- Time-based
- Charge-based

Two main approaches possible:

Time-based



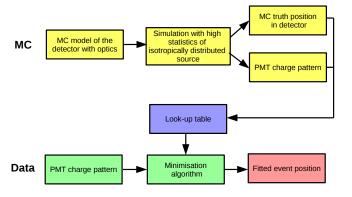
- Finite speed of light
- PMT hit time proportional to source distance from PMT
- Absolute vertex resolution uniform across volume
- Dependent on scintillator response times, PMT transit time, DAQ quality

Two main approaches possible:

Charge-based

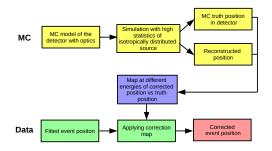
- Charge patterns of the PMTs
- Point-like source: closer PMTs expected to have more photon hits and charges
- Pattern detector dependent
- Vertex resolution improved towards the edge of the detector

Two main approaches possible:


- Time-based
- Charge-based

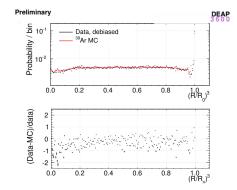
DEAP-3600 small enough for charge-based vertex reconstruction to deliver the better position resolution

How it is done:


Work in progress!

Fiducialisation and de-biasing using ³⁹Ar:

- Isotropic ³⁹Ar distribution
- Map true radius to reconstructed radius
- Account for energy dependence

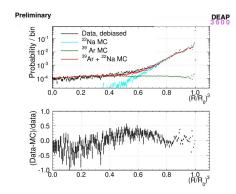


Fiducialisation and de-biasing using ³⁹Ar:

 Fiducial mass from activity of de-biased ³⁹Ar decay spectrum after applying fiducial cuts

consistent with 2222 kg of LAr

Work in progress!



16 / 18

²²Na studies to understand surface backgrounds:

 ²²Na low energy feature at low energies near ROI helps determine fiducial cut parameter

Work in progress

The Deap-3600 collaboration:

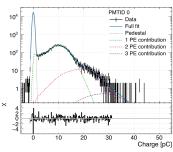
The speakers operational support was provided by NSERC

Back Up

DEAP-3600 calibration program:

Calibration Source	Calibration goal	Notes
Laserball	Optical (PMT) calibration	vacuum runs only
LED Light Injection	Optical (PMT) calibration, monitoring	used in all run phases
²² Na	Energy and position reconstruction, gamma response	Argon phase
AmBe	Energy calibration, gamma and neutron response	Argon phase
³⁹ Ar	Intrinsic, energy and position reconstruction	Argon phase

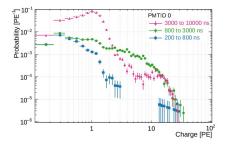
- Argon phase: gas phase (GAr), partial fill phase, liquid argon phase (LAr)
- LED Light Injection system with fibres installed on PMTs
- External calibration sources: ²²Na (1 MBq) and AmBe (74 MBq)
- Intrinsic calibration source: ³⁹Ar (expected 1.01 Bq/kg)



Single Photon counting:

Ideal measurement: single photon counting correcting for PMT effects

De-excitation photons (128 nm) \rightarrow TPB (420 nm) \rightarrow Photoelectron cascades in PMTs



arXiv:1705.10183

 Translation of PMT pulses to number of photoelectrons observed using charge division (qPE)

Correction of different effects necessary:

Effects to correct on PE estimator:

- PMT effects:
 - After-pulse (AP): caused by back-scatter of electrons on PMT dynodes
 - Saturation of PMTs
 - Dark noise
- Other effects:
 - Pile-up of two or more events in same event window

arXiv:1705.10183

