Supernova Neutrinos at the DUNE Experiment

Amanda Weinstein Iowa State University on behalf of the DUNE Collaboration

- Core-collapse supernovae as particle and astroparticle physics
 laboratory
- Introduction to DUNE
- CC SNe with DUNE
- Summary

Core-collapse Supernovae

- Neutrinos carry away 99% of gravitational binding energy (3 x 10⁵³ erg⁾ and 10% of core rest mass
- Oscillations give rise to non-thermal features
- Carries information about new physics (e.g. mass ordering) and SN processes

The DUNE Experiment

- Deep Underground Neutrino Experiment: Long baseline experiment
 - Neutrino beam from Fermilab to a large liquid argon (LAr) detector (Far Detector) at SURF in South Dakota
 - Large-scale prototypes at CERN (2018); 20-kt detector ready for beam in 2026
- Non-accelerator physics program in DUNE (supernova neutrino bursts, nucleon decay, etc.) takes advantage of period where detectors are commissioned in advance of beam.

Detection channels in LAr

 For CC/NC, could use photons from final product de-excitation to tag channel

The DUNE Far Detector

- 4 10-kt Liquid-Argon Time-Projection Chamber (LArTPC) modules in SURF 4850 ft underground
- LAr TPC provides
 - Excellent 3D imaging (few mm scale)
 - Totally active calorimeter
 - Particle ID through dE/dX, event topology, etc.
 - Slow drift time (~ms)

- Modules also equipped with wavelength-shifting bars and photon detectors (SiPMs)
 - Prompt scintillation light
 - Absolute event timing for nonbeam events

SNB Horizon with DUNE

- Requirements:
 - Energy resolution <10%
 - Energy threshold ~ 5 MeV

- Physics potential statisticsdriven
- Event rates scale by
 - Detector mass
 - Inverse square of SN distance

Neutronization burst with DUNE

• Early time structure of SN neutrino flux (presence or absence of neutronization burst) highly sensitive to mass hierarchy.

Technical Challenges

- Spectral distortion due to missing energy
- Accurate modeling of charged-current interactions in LAr
 - Poorly known cross sections
 - Mismatch between measurement and theory
 - A great deal of work ongoing in this area (Svoboda, Gardiner)
- Improve reconstruction using timing information
 - Light detection system efficiency
- Radiological backgrounds
 - Due to use of natural Ar, Ar 39 in particular
 - Mimics light from low-E interactions (e.g. 10 MeV SN v's)
 - suppress with spatial information?

Missing energy example: neutrons

Summary

- A nearby Galactic SN is a neutrino physics laboratory
 - Measurements of the time, flavor, and energy structure of the neutrino flux from a nearby Galactic SN provide a window on neutrino physics as well as the astrophysical dynamics.
- In addition to beam physics, DUNE has a rich program of particle physics and astrophysics done without beam and relying on the unique capabilities of the Far Detector.
 - As a LAr TPC the DUNE Far Detector offers unique access to the electron neutrino component and unique technical challenges.
 - The supernova neutrino burst program remains a key science goal (and a design driver) for DUNE

DUNE

Core-collapse Supernovae

- Important neutrino counterpart to EM signal
- Neutrinos carry away 99% of gravitational binding energy (3 x 10⁵³ erg⁾ and 10% of core rest mass

Physics Imprints

- MSW effects: matter modifies neutrino mass and hence oscillations (r > 200 km)
- "Collective oscillations:" forward coherent v-v scattering (r < 200 km)
- Flavor-specific burst evolution carries information about mass ordering and SN processes

LAr TPCs and the power of v_e

 The sensitivity of LAr TPCs to the electron neutrino component provides unique information about the early phase of the SN

SN neutrinos in DUNE cont.

- SN at 10 kpc in 40 kt LAr
- Garching model (no oscillations)

- Requirements:
 - Energy resolution <10%
 - Energy threshold ~ 5 MeV

Missing energy: Neutron headaches

- Simulated event
- E_v 16.3 MeV
- Electron deposits 4.5 MeV
- No primary photons from vertex
- Neutron deposits 7.6 MeV (primarily from capture γs)
- Total visible energy 12.2 MeV over 1.44 m radius
 - (neutrons wander)

